Электротехника

1.3.        Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор с дву­мя взаимодействующими р-n-переходами и с тремя выводами (рис. 1.15). В зависимости от чередования легированных областей различают транзисторы n-p-n-типа (рис. 1.15, а) и р-n-р-типа (рис, 1.15, б).

На рис. 1.15, в, г даны условные обозначения транзисторов п-р-п- и р-n-р-типов, соответственно. Выводы транзисторов обозначаются: Э – эмиттер, Б – база, К – коллектор.

Эмиттерная и коллекторная области отличаются тем, что в эмиттерной об­ласти концентрация примесей много больше, чем в коллекторной об­ласти. Переход, возникающий между эмиттером и базой, называется  эмиттерным переходом, а переход, возникающий между коллектором и базой – коллекторным.

На рис. 1.16 приведена схема включения транзистора с подключен­ными источниками постоянного напряжения и коллекторным рези­стором. В этой схеме с корпусом соединен вывод базы транзистора. Поэтому эту схему называют схемой включения транзистора с общей базой (ОБ).

Различают четыре режима работы биполярного транзистора:       

1) активный режим– открыт эмиттерный переход и закрыт коллекторный переход (рис. 1.16);

2) режим отсечки– оба р-n-перехода закрыты, и существенного тока через транзистор нет.

Для получения этого режима необходимо в схеме (см. рис. 1.16) изменить полярность источника ЕЭ  на противоположную;

1) режим насыщения– два р-n-перехода транзистора открыты и через них протекают прямые токи. Для получения этого ре­жима необходимо в схеме (см. рис. 1.16) изменить полярность источника ЕК на противопо­ложную;

2) инверсный режим – открыт коллекторный переход и за­крыт эмиттерный переход. Для получения этого режима не­обходимо в схеме (см. рис. 1.16) изменить на противоположные полярности источников ЕК и ЕЭ.

Для усиления и преобразования сигналов в основном используется активный режим работы. Работа биполярного транзистора в активном режиме основана на явлении диффузии, а также на эффекте дрейфа носителей заряда в электрическом поле.

Работа транзи­стора в активном режиме

Рассмотрим работу транзи­стора в активном режиме на примере транзистора р-n-р-типа (рис. 1.16). В этом режиме эмиттерный переход транзистора открыт. Откры­вающее напряжение равно ЕЭ = 0,4…0,7 В.

Через открытый эмиттерный переход течет ток iЭ (iЭ = 0,1…10 мА для маломощного транзистора). Как правило, в эмиттерной области транзистора кон­центрация акцепторных примесей во много раз больше концентрации донорных примесей в базовой n-области транзистора. Поэтому кон­центрация дырок в области эмиттера много больше концентрации электронов в области базы, и практически весь ток эмиттера – это дырочный ток.

В одиночном p-n-переходе при диффузии дырок в п-область происходит полная рекомбинация инжектированных дырок с электронами п-области. В эмиттерном переходе транзистора происходит такой же процесс. Благодаря этому процессу возникает ток базы iБ  (см. рис. 1.16). Однако в транзисторе происходят более сложные процессы.

Главной особенностью конструкции транзистора является относи­тельно тонкая базовая область. Ширина базы (W) в транзисторе много меньше длины свободного пробега дырок (L). У современных кремниевых транзисторов W » 1 мкм, а диффузионная длина L = 5…10 мкм. Следовательно, подавляющее большинство дырок достигают коллекторного перехода, не успев рекомбинировать с элек­тронами базы. Попадая в обратно смещенный коллекторный переход, дырки дрейфуют (и ускоряются) в имеющемся поле перехода.

Пройдя коллекторный переход, дырки рекомбинируют с электронами, подтекающими к коллектору от источника питания (ЕК). Отметим, что этот дырочный ток во много раз превышает собственный обратный ток закрытого коллекторного перехода и практически полностью определяет ток коллектора (iК) транзистора.

Из анализа активного режима (рис. 1.16) следует уравнение для токов транзистора:

.                                                        (1.2)

В этом уравнении ток базы много меньше тока эмиттера и тока  коллектора, а
ток коллектора практически равен току эмиттера транзистора.

Соотношения между токами в транзисторе характеризуются двумя  параметрами:

коэффициентом передачи тока эмиттера

,

и коэффициентом передачи тока базы

.

Используя формулу (1.2), полу­чим формулу взаимосвязи коэффициентов передачи:

.

Значения коэффициентов α и β зависят от конструкции транзисто­ра. Для большинства маломощных транзисторов, используемых в уст­ройствах связи и в компьютерах, коэффициент b = 20…200, а коэф­фициент a = 0,95…0,995.

Усилительные свойства транзистора

Рассмотрим усилительные свойства транзистора. Пусть на входе транзистора имеется напряжение ЕЭ = 0,5 В. И пусть это напряжение создает ток iЭ = 5 мА. Мощность, расходуемая на управление транзистором, равна:

РВХ = ЕЭ iЭ = 0,5 × 5 ×10-3 = 2,5 мВт.

Пусть сопротивление полезной нагрузки в коллекторной цепи транзистора (рис. 1.17) равно RК  = 1 кОм. По нагрузочному резистору протекает коллекторный ток, примерно равный эмиттерному току транзистора: iK » iЭ. Выходная мощность, выделяющаяся на нагрузке, равна:

РН = iK2RK = 25 мВт.

Следовательно, в схеме (см. рис. 1.17) обеспечивается десятикратное усиление по мощности. Заметим, что для обеспечения такого усиления требуется, чтобы на коллекторный переход было подано большое запирающее напряжение:

ЕК > UK,

где UK = iKRK – падение напряжения на нагрузочном сопротивлении в цепи коллектора. 

Увеличенная энергия выходного сигнала обеспечивается источником питания в коллекторной цепи.

Рассмотрим другие режимы работы транзистора:

· в режиме насыщения возникает прямой ток коллекторного перехода. Его направление противоположно направлению диффузионного тока дырок. Результирующий ток коллектора резко уменьшается, и резко ухудшаются усилительные свойства транзистора;

· редко используется транзи­стор в инверсном режиме, так как инжекционные свойства коллектора много хуже инжекционных свойств эмиттера;

· в режиме отсечки все токи через транзистор практически равны нулю – оба перехода тран­зистора закрыты, и усилительные свойства транзистора не проявляют­ся.

Кроме рассмотренной схемы включения транзистора с общей базой используются две другие схемы:

1) при соединении с корпусом эмиттера транзистора получим схему с общим эмиттером (ОЭ) (рис. 1.17). Схема ОЭ наиболее часто встречается на практике;

2) при соединении с корпусом коллектора транзистора получим схему с общим коллектором (ОК). В этих схемах управляющее напряжение подается на базовый вывод транзистора.

Зависимости токов через выводы транзистора от приложенных к транзистору напряжений называют вольт-амперными характеристи­ками (ВАХ) транзистора.

Для схемы с общим эмиттером (рис. 1.17) ВАХ транзистора имеют вид (рис. 1.18, 1.19). Аналогичные графики можно получить для схемы с общей базой. Кривые (см. рис. 1.18) называются входными характеристиками транзистора, так как они показывают зависимость входного тока от управляющего входного напряжения, подаваемого между базой и эмиттером транзистора. Входные характеристики транзистора близки к характеристикам р-n-перехода.

Зависимость входных характеристик от напряжения на коллекторе объясняется увеличением ширины кол­лекторного перехода и, следовательно, уменьшением толщины базы при увеличении обратного напряжения на коллекторе транзистора (эффект Эрли).

Кривые (см. рис. 1.19) называются выходными характеристиками транзи­стора. Их используют для определения коллекторного тока транзистора. Увеличению коллекторного тока соответствует увеличе­ние управляющего напряжения на базе транзистора:

uБЭ4 > uБЭ3  > uБЭ2  > uБЭ1..

При uКЭ £ UНАС (см. рис. 1.19) напряжение на коллекторе транзистора ста­новится меньше напряжения на базе. В этом случае открывается кол­лекторный переход транзистора, и возникает режим насыщен
ия, при котором ток коллектора резко уменьшается.

При большом напряжении на коллекторе ток коллектора начинает возрастать, так как возникает процесс лавинного (или теплового) про­боя коллекторного перехода транзистора.

Из анализа ВАХ транзистора следует, что транзистор, как и диод, относится к нелинейным элементам. Однако в активном режиме при uКЭ > UНАС ток коллектора транзистора изменяется примерно прямо пропорционально приращениям входного управляющего напряжения на базе транзистора, т.е. выходная цепь транзистора близка по свойствам к идеальному управляемому источнику тока. Ток коллектора в активном режиме практически не зависит от нагрузки, подключаемой к коллектору транзистора.

На рис. 1.20 показана простейшая линейная эквивалентное схема транзистора, полученная для активного режима работы при подаче на транзистор малых по амплитуде переменных сигналов (Um < 0,1 В). Основным элементом этой схемы является источник тока, управляемый входным напряжением:

IK = SUБЭ,

где S – крутизна транзистора, равная для маломощных транзисторов 10…100 мА/В.

Сопротивление rКЭ характеризует потери энергии в коллекторной цепи. Его значение для маломощных транзисторов равно десяткам и сотням килоом. Сопротивление эмиттерного перехода (rБЭ) равно сотням ом или единицам килоом. Это сопротивление характеризует потери энергии на управление транзистором. Значения параметров эквивалентной схемы можно найти, указывая рабочие точки на входных и выходных ВАХ тран­зистора и определяя соответствующие производные в этих рабочих точках (или задавая в рабочих точках приращения соответствующих токов и напряжений).

Более точные и полные эквивалентные схемы транзисторов вклю­чают емкости переходов, учитывают нелинейности переходов транзи­сторов, содержат объемные сопротивления полупроводников, индук­тивности выводов и паразитные емкости. Такие сложные эквивалентные схемы транзисторов используются, например, в совре­менных программах машинного моделирования.