3.1.     Нелинейный элемент и воздействие на него единичного сигнала

Нелинейный элемент 

Нелинейным элементом  называют элемент, параметры которого зависят от протекающего через него тока или от приложенного к нему напряжения. Типичными нелинейными элементами являются диод и транзистор. Их параметры существенно изменяются при воздействии рабочих токов и напряжений.

Ранее рассматривались линейные элементы, параметры которых не зависят от протекающего тока и приложенного напряжения. Например, в рабочем диапазоне напряжений и токов такие радиоэлементы, как резисторы и конденсаторы, считаются линейными элементами. На рис. 3.1 приведены вольт-амперные характеристики (ВАХ) нелинейного (1) и линейного (2) резисторов. Только при воздействии малых напряжений нелинейные элементы можно приб­лиженно заменять линейными элементами. Например, характеристики  диодов  и  транзисторов  линеаризуются,  если  воздействует напряжение DU < 0,1 В.

Отметим, что кроме линейных и нелинейных элементов использу­ются параметрические элементы, параметры которых зависят от вре­мени. Некоторые свойства параметрических элементов близки к свой­ствам нелинейных элементов, так как на практике изменений параметров добиваются подачей дополнительных сигналов на пара­метрический элемент, и параметры параметрических элементов в ито­ге оказываются зависимыми от напряжений или токов в цепи.

Если в цепи, кроме линейных элементов, содержатся нелинейные резисторы и (или) нелинейные конденсаторы и (или) нелинейные катушки, то такая цепь называется нелинейной. Процессы в такой цепи в общем случае описываются нелинейным дифференциальным урав­нением. Общих аналитических методов решения этих уравнений не существует. Как правило, эти уравнения решают на ЭВМ с помощью численных методов. Например, с помощью численных методов анали­зируются нелинейные цепи в программах схемотехнического модели­рования.

Основные явления, свойственные любой нелинейной цепи, не обя­зательно изучать, составляя и решая сложные нелинейные дифферен­циальные уравнения. Общие свойства нелинейной цепи будут прояв­ляться в простых цепях, содержащих один нелинейный резистор. Кстати, простые нелинейные цепи наиболее часто используются в ра­диоэлектронике. Для их анализа используют один из аналити­ческих методов – метод тригонометрических формул.

В соответствии с методом тригонометрических формул вольт-амперную характеристику нелинейного резистора аппроксимируем полиномом:

,                                            (3.1)

где коэффициенты аi (i = 0, 1, 2, …, n) зависят от вида ВАХ.

Пусть к нелинейному элементу приложено гармоническое напря­жение  Для простоты начальная фаза этого напря­жения выбрана равной нулю. Подставляя это напряжение в формулу (3.1), получим ток, протекающий через нелинейный элемент:

Используя известные тригонометрические формулы:

перепишем выражение для тока в виде суммы постоянной состав­ляющей и гармоник тока с кратными частотами (в виде ряда Фурье):

(3.2)

где

Из анализа выражения (3.2) следует общее свойство нелинейных це­пей – порождать в спектре выходного сигнала новые частоты, кото­рых не было в спектре входного сигнала. Номер наивысшей гармони­ки в спектре выходного сигнала соответствует степени аппроксимирующего полинома.

Как известно, сумма гармоник различных, но кратных частот об­разует периодический сигнал, форма которого отличается от формы гармонического колебания. Следовательно, в нелинейных цепях в об­щем случае искажается форма сигнала. Гармонический сигнал при этом становится негармоническим, треугольный сигнал может стать трапецеидальным и т.п.

На рис. 3.2 показаны спектры входного (рис. 3.2, а) и выходного (рис. 3.2, б) сигналов нелинейной цепи, описываемой полиномом треть­ей степени. Как видим, в выходном сигнале появилась по
стоянная со­ставляющая, а также вторая и третья гармоники. Отметим, что воз­никновение новых гармоник, которых не было во входном сигнале, не нарушает законов причинности и сохранения энергии.

Новые частоты, постоянную составляющую и вторую гармонику, можно получить с помощью параметрического элемента – аналогового перемножителя, подавая на него управляющий гармонический сигнал с частотой, точно равной частоте приложенного к элементу входного напряжения.

Свойство нелинейных цепей порождать новые гармоники и иска­жать форму сигнала широко используется в радиоэлектронике при создании разнообразных устройств. Рассмотрим некоторые из этих устройств, наиболее часто встречающиеся на практике.

Нелинейный усилитель

Нелинейный усилитель – это усилитель на работающем в нели­нейном режиме транзисторе, имеющий увеличенный коэффициент полезного действия (рис. 3.3).

Отличительной особенностью схемы является отсутствие по­стоянного напряжения смещения на базе транзистора. Поэтому тран­зистор при отсутствии входного сигнала будет закрыт, и его постоянные токи базы, коллектора и эмиттера будут практически рав­ны нулю. Транзистор будет открываться только при подаче положи­тельной полуволны большого по амплитуде входного напряжения (амплитуда должна быть много больше 0,1 В). Отметим, что в некото­рых нелинейных усилителях может использоваться источник напря­жения смещения. В этом случае напряжение выбирается или запи­рающим, или небольшим открывающим.

Работа нелинейного усилителя описывается с помощью диаграм­мы токов и напряжений (рис. 3.4). На рис. 3.4, а приведена передаточная ВАХ транзистора. Зависимость от времени напряжения на базе транзистора приведена на рис. 3.4, в. Это гармоническое напря­жение поступило через разделительный конденсатор с входных зажи­мов каскада. Как видим, только положительные полуволны вход­ного напряжения открывают транзистор.

Зависимость возникающего тока коллектора от времени (рис. 3.4, б) получена на основе кривых рис. 3.4, а и 3.4, в. Последовательность построения пока­зана стрелками. Ток коллектора, протекая по резистору RН (см. рис. 3.3), создает на коллекторе транзистора переменное напряжение (рис. 3.4, г). Отме­тим, что при увеличении тока коллектора напряжение на коллекторе уменьшается, так как увеличивается падение напряжения на резисторе RН. Этим объясняется эффект инвертирования фазы сигнала, возни­кающий в каскадах ОЭ.

Форма напряжения на коллекторе транзистора существенно отли­чается от формы гармонического входного сигнала. В этих искажени­ях формы сигнала проявляется свойство нелинейных цепей, обуслов­ленное возникновением в токе транзистора дополнительных гармоник. Для уменьшения искажений используют двухтактную схе­му. В схеме используются два транзистора разных типов, ра­ботающие на общую нагрузку. Причем если транзистор типа п-р-п от­крывается при подаче положительной полуволны напряжения, то другой, р-п-р-транзистор, открывается при подаче отрицательной по­луволны входного напряжения.

Основное преимущество нелинейного усилителя – увеличенный коэффициент полезного действия (КПД). Увеличение КПД объясняется тем, что существенную часть времени транзистор в работающем нелинейном усилителе закрыт и не потребляет энергии от источника питания.

Нелинейные усилители используются в автогенераторах (напри­мер, в импульсных источниках питания ЭВМ), в усилителях мощности (например, в мощных усилителях звуковой частоты), в качестве усилителей-ограничителей, в передатчиках и т.д.

Умножитель частоты

Умножитель частоты – это нелинейное устройство, частота на выходе которого в несколько раз больше частоты входного сигнала. В умножителе частоты используется свойство нелинейных элементов – порождать гармоники с частотами, кратными частоте входного сигна­ла.

Простейшая схема умножителя частоты строится на основе схемы резонансного усилителя (рис. 3.5). При подаче на вход каскада гармо­нического сигнала с большой амплитудой в составе тока коллектора транзистора возникают гармоники с частотами, в целое число раз превышающими частоту входного сигнала. Резонансный контур (нагрузку каскада) настраивают на частоту одной из в
ысших гармоник. На этой частоте в контуре возникает резонанс, а на колебательном контуре и на выходе каскада появляется гармоническое напряжение, частота которого в целое число раз больше частоты входного сигнала. Отметим, что полоса пропускания контура должна быть достаточно малой, чтобы выделялась только одна высшая гармоника.

Расчет выходного напряжения умножителя частоты проводится по формуле:

,

где  – комплексное сопротивление параллельного колебательного контура,  – амплитуда n-й гармоники тока коллектора транзистора. При точной настройке параллельного контура на частоту выделяемой гармоники получим:  так как реактивное сопротивление катушки индуктивности компенсируется реактивным сопротивлением конденсатора контура.

Умножение частоты в два раза можно получить, используя параметрическую цепь (аналоговый перемножитель) и подавая гармонический сигнал одновременно на оба входа перемножителя. Умножители частоты широко используются в компьютерах для получения увеличенных тактовых частот при использовании относительно низкочастотного задающего кварцевого генератора.