3.10.2. Самоупорядочение

Самоупорядочение – это процесс адсорбции и специфического расположения молекул на твердой поверхности. Его движущей силой является хемосорбция, которая в особенности проявляется в высокоэнергетических реакциях между адсорбантом и адсорбирующей поверхностью. В отличие от сильного взаимодействия между адсорбируемой молекулой и поверхностью, взаимодействие между самими молекулами остается слабым. В органическом и неорганическом мире существует большое количество примеров самоупорядочения.

Пленки мономолекулярной толщины, образовавшиеся по механизму самоупорядочения, имеют очень низкую плотность дефектов, достаточно стабильны и механически прочны. Их используют в качестве трафарета в литографических процессах. При этом нанометровое разрешение достигается с использованием сканирующих зондов в сканирующем туннельном или атомном силовом микроскопе.

Молекулярные блоки для самоупорядочения должны содержать три основные функциональные группы: группу, прикрепляющую их к поверхности, промежуточную группу и поверхностную функциональную группу. Эти группы не являются взаимозаменяемыми. Так, функции позиционирования и распознавания лучше реализуются с

использованием органических групп, нежели неорганических, хотя электронные свойства последних изучены более глубоко. Комбинирование различных по составу групп постоянно рождает новые формы самоупорядочения.

В качестве групп, прикрепляющих весь молекулярный блок к поверхности подложки, чаще всего используют силаны RSiX3 (R = СН3, С2Н5, …), для того чтобы прикрепиться к гидроксильным (ОН) группам, которые обычно покрывают поверхность кремния и другие технологически важные поверхности. В качестве X компонента, замещающего водород в силане, используются метокси-группы, хлор или их смесь. Состав прикрепляющей группы существенно влияет на упорядоченное расположение адсорбированных молекул и на плотность их упаковки. Например, для поверхности арсенида галлия и золота хорошие результаты дает тиол (RSH).

Промежуточная группа влияет на взаимодействие всего хемосорбированного молекулярного блока с обрабатывающим ее инструментом. Отдаление поверхностной функциональной группы от подложки при увеличении размеров промежуточной группы (например, мультиплицируя CH2-группы) позволяет располагать зонд ближе к пленке и, тем самым, понижать дозу экспонирования и пороговое напряжение. Фенильные группы, обладающие определенной проводимостью, хорошо подходят в качестве промежуточных групп при электронном экспонировании зондом сканирующего туннельного микроскопа.

Поверхностные функциональные группы определяют свойства «новой» поверхности. Например, аминовые группы (NH2) могут быть использованы как места для прикрепления определенных молекул. Галогены (хлор, йод и др.) имеют большие сечения электронного захвата, что облегчает десорбцию галогенсодержащих фрагментов. Их последующая обработка может осуществляться с целью замены галогенных групп более активными. Поверхности, покрытые алкильными группами, инертны и гидрофобны. По химической активности они идентичны парафину. Ввиду этого они хорошо подходят для маскирования при жидкостном травлении и ограниченно – при сухом травлении

Рис. 3.16. Формирование наноразмерного рисунка с использованием самоупорядочивающейся мономолекулярной пленки

Рассмотрим процесс  самоупорядочения для создания нанометровых элементов на кремниевой подложке (рис. 3.16).

Перед нанесением пленки кремниевую подложку очищают и пассивируют водородом в растворе HF. Затем ее окунают в раствор органосиланового мономера и высушивают, чтобы сформировать на ее поверхности пленку мономолекулярной толщины, состоящую из молекул, один конец которых закрепляется на подложке, а другой образует новую поверхность. Среди подходящих для этих целей органосиланов – октадецилтрихлоросилан C18H37Cl3Si, фенэтилтриметоксисилан C6H5CH2CH2(CH30)3Si, хлорометилфенилтриметоксисилан С1СН2СНбНз(СН3)3Si, хлорметилфенэтилтриметоксисилан ClCH2C6H3CH2CH2(CH30)3Si и другие аналогичные соединения.

Созданную мономолекулярную пленку, типичная толщина которой составляет порядка 1 нм, обрабатывают по требуемому рисунку низкоэнергетическими электронами, инжектируемыми с зонда сканирующего туннельного или атомного силового микроскопа. Напряжение при этом выбирают в пределах 210 В, в зависимости от конкретного состава пленки, задаваемого главным образом поверхностными группами, и от пассивации поверхности подложки. После этого образец окунают в раствор с коллоидными частицами палладия, которые прикрепляются к необлученным областям пленки. Затем образец снова высушивают и помещают в ванну для электролитического осаждения никеля.

Островки палладия на поверхности служат каталитическими центрами для осаждения никеля. За счет бокового роста никеля промежутки между палладиевыми островками заполняются, и образующаяся толстая пленка никеля имеет сплошную бездефектную структуру. Созданную таким образом профилированную металлическую пленку используют в качестве маски при последующем травлении. Практически достижимое разрешение составляет 15…20 нм, хотя с теоретической точки зрения предельный минимальный размер элемента интегральной микросхемы ограничивается размером используемых для самоупорядочения молекул.