Электронные цепи и микросхемотехника

3.2.1. Физические основы зондовых технологий

Нанотехнологические подходы, использующие сканирующие зонды, базируются на научном фундаменте и технических приемах, разработанных для сканирующей туннельной микроскопии (scanning tunneling microscopy – STM) и атомной силовой микроскопии (atomic force microscopy – AFM). В их основе лежит возможность позиционирования с высокой точностью атомарно острого зонда вблизи поверхности образца.

Принципы и конструкцию первого устройства для сканирующей туннельной микроскопии предложили Герд Бинниг и Генрих Рорер в 1981 г., работавшие в то время в филиале IBM в Цюрихе. Позже, в 1986 г., за работы по сканирующей туннельной микроскопии они были удостоены Нобелевской премии по физике.

Физическую основу сканирующей туннельной микроскопии составляют явления, определяемые туннелированием электронов в зазоре между атомарно острым зондом и поверхностью анализируемого образца. Рассмотрим ситуацию, когда к поверхности электропроводящего образца подведен металлический зонд, заканчивающийся одним атомом. При расстоянии между ними, сравнимом с межатомным (0,1…0,3 нм), волновые функции электронов, принадлежащих атому зонда и ближайших к нему атомов на поверхности образца, будут перекрываться, обеспечивая, таким образом, благоприятные условия для туннелирования электронов через этот зазор. В квазиклассическом приближении вероятность туннелирования в этих условиях (W) определяется главным образом величиной зазора (z) и приложенным напряжением (V):

,

(3.2)

где ℏ – постоянная Планка; т – масса электрона; е – заряд электрона.

Туннельный ток в зазоре пропорционален вероятности туннелирования. Он экспоненциально зависит от величины зазора, а следовательно, очень чувствителен к атомно-структурным неоднородностям на поверхности образца. За счет этого, перемещая зонд вдоль поверхности и контролируя протекающий по нему туннельный ток, можно анализировать топологию поверхности с атомным разрешением.

В сканирующем туннельном микроскопе эта идея реализуется следующим образом (рис. 3.3). Металлический зонд, обычно изготавливаемый из вольфрама, закрепляют в держателе, пространственное положение которого регулируется тремя пьезоэлементами с помощью подаваемого на них управляющего напряжения. Зонд подводят к образцу на расстояние, обеспечивающее протекание туннельного тока, и пьезоэлементами, задающими его положение в плоскости ху, сканируют вдоль поверхности.

При этом системой обратной связи протекающий туннельный ток поддерживают постоянным, меняя соответствующим образом приложенное напряжение (V). Зависимость V(x,y) отражает атомный рельеф поверхности, если ее электронные свойства (работа выхода) однородны. Локальное изменение работы выхода, характерное для образцов, состоящих из разнородных по своим свойствам атомов, учитывается с по

мощью дополнительной малой модуляции зазора между зондом и анализируемой поверхностью. Таким образом удается не только «увидеть» расположение атомов на поверхности, но и различить области разного атомного состава. Вертикальное разрешение достигает 0,01…0,05 нм, горизонтальное – 0,3 нм. Размер анализируемой поверхности обычно составляет сотни микрометров. Ограничением метода является необходимость хороших электропроводящих свойств у исследуемого материала, для того чтобы обеспечить протекание достаточного для регистрации туннельного тока.

Рис. 3.3. Относительное расположение зонда и подложки в сканирующем туннельном микроскопе

В атомной силовой микроскопии вместо туннельного тока для анализа поверхности регистрируются силы межатомного взаимодействия в зазоре зонд–подложка. Для определения этих сил острый зонд закрепляют на упругой консоли (рис. 3.4).

Отклонение консоли с высокой степенью точности пропорционально действующей на нее силе. Это отклонение регистрируется с высокой точностью оптическими (например, лазерной интерференцией) или электронными (например, зондом сканирующего туннельного микроскопа) методами. При сканирова
нии зонда вдоль анализируемой поверхности сигнал об отклонении консоли дает информацию о распределении атомных и молекулярных сил по поверхности образца, а следовательно, о расположении и природе поверхностных атомов.

Атомная силовая микроскопия, в отличие от сканирующей туннельной микроскопии, не чувствительна к электронным свойствам подложки. Поэтому она может быть использована для анализа поверхности как проводниковых, так и диэлектрических материалов. Атомную силовую микроскопию обычно проводят в контактном режиме, в котором зонд контактирует с анализируемой поверхностью. При этом на зонд действует сила отталкивания порядка 10-9Н. Эта сила задается пьезоэлектрическим элементом позиционирования, толкающим зонд к поверхности. Бесконтактный режим с зазором (5…15 нм) используется, когда имеется опасность того, что зонд может изменить (повредить) поверхность.

Рис. 3.4 – Относительное расположение зонда и подложки (а) и регистрируемый эффект в атомном силовом микроскопе (б)

Контролируя возмущение, создаваемое зондом у поверхности образца, можно осуществлять управляемую локальную модификацию этой поверхности с атомным разрешением. Этому способствуют экстремальные условия, которые можно реализовать у острия зонда, а именно: электрические поля напряженностью до 109В/м  и токи с плотностью до 107А/см2. С использованием сканирующих зондов реализованы манипулирование индивидуальными атомами (атомная инженерия), безмасочное локальное окисление и осаждение материалов, низкоэнергетическая электронно-лучевая литография.

Преимущества использования зондовых методов модификации материалов включают не только высокую локальность воздействия, но и возможности непосредственной визуализации результата воздействия и даже локальных электрических измерений с использованием того же самого зонда.