6.6.2.      Способы выключения тиристоров

Выключение тиристора путем уменьшения тока в цепи основ­ных электродов до значения, меньшего удерживающего тока, или путем разрыва цепи основных электродов.

Тиристор будет выключен, т.е. переведен из открытого состояния в закрытое, только после рассасывания неравновесных носителей заряда в базовых областях. Если до окончания процесса выключения вновь подать напряжение между основными электродами тирис­тора, то он окажется во включенном состоянии. Таким образом, для выключения тиристора необходимо некоторое время.

При выключении тиристора путем разрыва цепи основных электродов рассасывание неравновесных носителей заряда про­исходит только в результате рекомбинации. Такой способ выклю­чения применяется, когда время выключения тиристора не влияет на работу той или иной схемы.

Выключение тиристора путем изменения полярности анодного напряжения

Для ускорения процесса рассасывания неравновес­ных носителей заряда, накопленных в базовых областях при прохождении прямого тока через открытый тиристор, необходимо понизить потенциальный барьер коллекторного перехода. Однако коллекторный переход при открытом состоянии тиристора уже был смещен в прямом направлении из-за накопленных неравно­весных носителей заряда в базовых областях и, следовательно, имел малое сопротивление.

Поэтому на долю коллекторного перехода при переключении тиристора на обратное напряжение приходится очень малая часть всего внешнего напряжения. Из-за малого сопротивления тиристора, находящегося еще в открытом состоянии, обратный ток на первом этапе процесса выключе­ния ограничен сопротивлением внешней цепи.

Существенное уменьшение времени выключения даже при не­больших обратных напряжениях удается получить для тиристо­ров, проводящих в обратном направлении. У этих тиристоров оба эмиттерные перехода зашунтированы объемными сопротивле­

ниями прилегающих базовых областей. Поэтому даже небольшое обратное напряжение способствует быстрому рассасыванию накопленных в базовых областях неравновесных носителей.

Выключение тиристора с помощью тока управляющего электрода

Для выключения тиристора необходимо отвести не­равновесные основные носители заряда из базы, у которой имеется управляющий электрод. В то же время основной ток, проходящий через еще открытый тиристор, непрерывно воспол­няет количество неравновесных носителей заряда в базовых об­ластях. Таким образом, значение тока управления, необходи­мого для выключения тиристора, зависит от основного тока через тиристор.

Некоторые тиристоры с большой площадью р-n-переходов невозможно выключить с помощью тока управляющего электрода при больших токах между основными электродами. Объясняется это тем, что при движении носителей заряда к управляющему электроду, например, дырок в тиристоре (рис. 6.14) база тиристора под эмиттерным переходом становится неэквипотенциальной и дальние от управляющего электрода части эмиттерного перехода остаются смещен­ными в прямом направлении. Инжекция электронов из этих частей эмиттерного перехода поддерживает соответствующую часть тиристорной структуры в открытом состоянии.

Таким образом, существуют тиристоры, запираемые и незапираемые по управляющему электроду.

Запираемый (двухоперационный) тиристор – это тиристор, который может переключаться из закрытого состояния в открытое и, наоборот, при подаче на управляющий электрод сигналов соответствующей полярности.

Но и для за­пираемого тиристора существует максимально допустимый по­стоянный запираемый ток () – наибольшее значение основ­ного тока, до которого допускается запирание тиристора по управляющему электроду. При использовании в мощных устрой­ствах запираемые тиристоры обладают преимуществами перед транзисторами, поскольку тиристоры способны выдерживать значительно большие напряжения в закрытом состоянии.