Предохранители

Общие сведения. Предохранители – это электрические аппараты, предназначенные для защиты электрических цепей от токовых пе­регрузок и токов к.з. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство.

К предохранителям предъявляются следующие требования:

1) Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.

2) Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны рабо­тать с токоограничением.

3) При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.

4) Характеристики предохранителя должны быть ста­бильными, а технологический разброс их параметров не должен нарушать надежность защиты.

5) В связи с возросшей мощностью установок предохра­нители должны иметь высокую отключающую способность.

6) Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

Нагрев плавкой вставки при длительной нагрузке. Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на     рис. 6.7) во всех точках шла немного ниже характеристики защищае­мой цепи или объекта (кривая 2 на рис. 6.7). Однако ре­альная характеристика предохранителя (кривая 3) пересе­кает кривую 2. Поясним это. Если характеристика предо­хранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. По­этому ток плавления вставки выбирается больше номи­нального тока нагрузки. При этом кривые 2 и 3 пересека­ются.

В области больших перегрузок (область Б) предо­хранитель защищает объект. В области А предохранитель объект не защищает.

Подпись:  Рис. 6.7. Согласование характери-стик пре¬дохранителя и защищае-мого объекта  При небольших перегрузках (1,5…2,0) нагрев предо­хранителя протекает медленно. Большая часть тепла отда­ется окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая встав­ка сгорает при достижении ею уста­новившейся температуры, называет­ся пограничным     током .

Для того чтобы предохранитель не срабатывал при номи­нальном токе, необходимо>. С другой сто­роны, для лучшей защиты значение должно быть воз­мож-но ближе к номинальному. При токах, близких к погра­ничному, температура плавкой вставки должна прибли­жаться к температуре плавления.

В связи с тем, что время плавления вставки при погра­ничном токе велико (более 1 ч) и температура плавления ее материала составляет много сотен градусов Цельсия, все детали предохранителя нагреваются до высоких темпе­ратур. Происходит тепловое старение плавкой вставки.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и спла­вы (табл. 6.1.)

Таблица 6.1

Свойства материалов, используемых в качестве плавкой вставки предохранителей

Металл   вставки

Удельное

сопротив­ление

,мкОм

• м

Температура, °С

Медь

0,0153

250

1083

80000

11 600

91 600

Серебро

0,0147

961

62000

8000

70 000

Цинк

0,0800

200

419

9000

3000

12 000

Свинец

0,2100

150

327

1200

400

1600

Примечание. – допустимая температура плавкой

вставки при дли­тельном  про-текании тока; – температура плавления вставки; и – ко­эффициенты,

определяющие время плавления при КЗ. Время нагрева плавкой вставки от

начальной температуры до полного ее разрушения определяется суммой коэффициентов

А’+А”.

Наименьшую температуру плавления имеет свинец. Но удельное сопротивление свинца в 12 раз выше, чем у меди. Для того чтобы при прохождении данного тока вставка на­грелась до допустимой температуры (150 °С), ее сечение должно быть значительно больше, чем сечение вставки из меди.

При плавлении вставки пары металла ионизируются в возникающей дуге благодаря высокой температуре. Из-за большого объема вставки количество паров металла в дуге велико, что затрудняет ее гашение и уменьшает предель­ный ток, отключаемый предохранителем. Из-за этих осо­бенностей вставок из легкоплавких металлов широкое распространение получили медные и серебряные плавкие встав­ки с металлургическим эффектом, который объясняется ниже. На тонкую медную проволоку (диаметром менее 0,001 м) наносится шарик из олова. При нагреве вставки сначала плавится олово, имеющее низкую температуру плавления (232 °С). В месте контакта олова с проволокой начинается растворение меди и уменьшение ее сечения. Это вызывает увеличение сопротивления и повышение потерь в этой точке. Процесс длится до тех пор, пока медная про­волока не расплавится в точке расположения оловянного шарика.

Возникшая при этом дуга расплавляет прово­локу на всей длине. Применение оловянного шарика снижает среднюю температуру плавления вставки до 280 °С.

Отношение/ уменьшается до 1,2, что дает улуч­шение времятоковой    характеристики.

Стабильность времятоковой характеристики в значи­тельной степени зависит от окисления плавкой вставки. Свинец и цинк образуют на воздухе пленку оксида, кото­рая предохраняет вставку от изменения сечения. Медная вставка при длительной работе и высокой температуре ин­тенсивно окисляется. Пленка оксида при изменении темпе­ратурного режима отслаивается, и сечение вставки постепен­но уменьшается. В результате плавкая вставка перегорает при номинальном токе, если ее температура при токе, близ­ком к пограничному, выбрана высокой. В табл. 6.1 приве­дены рекомендуемые допустимые температуры вста­вок при номинальном токе. Температура медной вставки при токе, близком к номинальному, должна быть значитель­но ниже температуры плавления. Поэтому приходится за­вышать сечение вставки и тем самым увеличивать отноше­ние /примерно до 1,8, что ухудшает защитные свойства предохранителя.

Серебряные плавкие вставки не подвержены тепловому старению, и ‘для них отношение  / определяется только нагревом.

У вставок из легкоплавких материалов эксплуатацион­ная температура ближе к температуре плавления, что поз­воляет снизить отношение / до 1,2…1,4.

В настоящее время в качестве материала плавкой встав­ки начали применять алюминий. Пленка оксида на поверхности вставки защищает алюминий от коррозии и     де­лает характеристику предохранителя стабильной. Большее удельное сопротивление материала компенсируется увеличением сечения вставки. Алюминий имеет температуру плавления ниже, чем у меди (658 против 1083 °С).

Времятоковые характеристики  предохранителей со вставками постоянного сечения из легкоплавкого металла хорошо согласуются с характеристиками силовых транс­форматоров и других подобных объектов. Это объясняется низкой температурой плавления, стойкостью против корро­зии и малой теплопроводностью материала таких    вставок.

Медная вставка из-за высокой теплопроводности, высо­кой температуры плавления и большого отношения  / в области малых перегрузок не обеспечивает защиту объ­екта (область А, рис. 6.7).

Нагрев плавкой вставки при КЗ. Если ток, проходящий через вставку, в 3… 4 раза боль­ше номинального, то практически процесс нагрева идет адиабатически, т. е. все тепло, выделяемое плавкой встав­кой, идет на ее нагрев. Время нагрева вставки до температуры плавления

,                                                  (6.11)

где – постоянная, определяемая только свойствами мате­риала и от размера вставкине зависящая; – поперечное сечение вставки; -  ток, протекающий по вставке при КЗ  защищаемой цепи; -  плотность тока во вставке.

После того как температура плавкой вставки достигла температуры плавления, для перехода вставки из твердого состояния в жидкое ей необходимо сообщить тепло, равное скрытой теплоте плавления.

По мере того как часть плавкой вставки из твердого со­стояния перейдет в жидкое, ее удельное сопротивление рез­ко увеличится (в десятки раз). Время перехода из твердого состояния  в  жидкое

,

где – удельное сопротивление материала вставки при температуре плавления; – удельное сопротивление мате­риала вставки в жидком состоянии; – плотность материа­ла вставки; -  скрытая теплота плавления на единицу массы материала вставки.

Значения постоянных и для наиболее часто приме­няемых металлов приведены  в табл. 6.1. В действительности процесс плавления идет более сложно. Как только появит­ся жидкий участок вставки, электродинамические силы, сжимающие проводник, образуют суженные уча­стки. В этих участках возрастает плотность тока и повыша­ется температура. Уменьшение сечения вставки создает раз­рывающие усилия, аналогичные силам в контактах при КЗ. Таким образом, как правило, дуга загорается рань­ше, чем вставка полностью перейдет в жидкое состояние.

Основным параметром предохранителя при КЗ являет­ся предельный ток отключения. Это ток, который он может отключить при возвращающемся напряжении, равном наи­большему рабочему напряжению.

Подпись:  Рис. 6.8. Работа предохрани-теля с токоограничением Плавление вставки переменного сечения происходит в перешейках с наименьшим сечением. Процесс нагрева пе­решейка протекает так быстро, что тепло почти не успе­вает отводиться на участки повышенного сечения. Наличие перешейков уменьшенного сечения позволяет резко сни­зить время с момента начала КЗ до появления дуги.

Про­цесс гашения дуги начинается до момента достижения то­ком к.з. установившегося или даже амплитудного значе­ния (рис. 6.8). Дуга образуется через время после начала КЗ, когда ток в цепи значительно меньше установившегося значе­ния.

Средства дугогашения позволяют погасить дугу за мил­лисекунды. При этом проявляется эффект токоограничения, показанный на рис. 6.8. При отключении поврежденной цепи с токоограничением облегчается гашение дуги, так как отключается не установившийся ток к.з., а ток, опреде­ляемый временем плавления вставки.

С ростом номинального тока возрастает, естественно, и минимальное сечение вставки.

Увеличение этого сечения приводит к возрастанию длительности плавления вставки и уменьшению эффекта токоограничения. Интенсивный от­вод тепла от вставки при номинальном режиме позволяет выбрать уменьшенное сечение вставки и повысить эффект токоограничения.