Электротехническая сталь

Она является магнитно-мягким материалом, широко применяемым в электротехнических изделиях. В сталь вводят 0,8—4,8 % кремния, что резко повышает удельное электрическое сопротивление. В результате этого в электротехнической стали резко снижаются потери мощности от вихревых токов. Вместе с тем введение кремния снижает потери на гистерезис и увеличивает магнитную проницаемость в слабых и средних полях.

Рис. 352. Процесс изменения доменов при намагничивании ферромагнитного материалаРис. 352. Процесс изменения доменов при намагничивании ферромагнитного материала

Рис. 353. Направления легкого и трудного намагничивания в кристалле ферромагнитного материала (а) и их расположение в холоднокатаной стали (б)Рис. 353. Направления легкого и трудного намагничивания в кристалле ферромагнитного материала (а) и их расположение в холоднокатаной стали (б)

Электротехническая сталь обладает малой коэрцитивной силой и имеет высокую магнитную проницаемость, что делает ее основным материалом, используемым для изготовления различных магнитопроводов в электрических машинах и аппаратах. Электротехническую сталь изготовляют в виде листов толщиной 0,1—0,5 мм горячей или холодной прокатки. Эта сталь в зависимости от состава разделяется на ряд марок: 1111, 1112, 1311, 1411, 3411 и др. Первая цифра в обозначении марки электротехнической стали характеризует класс по структурному состоянию и виду прокатки:
1 — горячекатаная изотропная; 2 — холоднокатаная изотропная; 3 — холоднокатаная анизотропная. Вторая цифра характеризует содержание кремния: 0 — до 0,4 %; 1 — от 0,4 до 0,8 %; 2 — от 0,8 до 1,8 %; 3 — от 1,8 до 2,8 %; 4 — от 2,8 до 3,8 %; 5 — от 3,8 до 4,8 %. Третья цифра характеризует группу по основной нормируемой характеристике: 0 — удельные потери при магнитной индукции В = 1,7 Тл и частоте f = 50 Гц (p1,7/50); 1 — удельные потери при B = 1,5 Тл и f= 50 Гц (p1,5/50); 2 —удельные потери при B = 1,0 Тл и f = 400 Гц (p1,0/400); 6 — магнитная индукция в слабых магнитных полях при B = 0,4 А/М (B0,4); 7 — магнитная индукция в средних магнитных полях при B=10 А/М (В1,0). Четвертая цифра указывает порядковый номер типа стали.

Различие горячекатаной и холоднокатаной сталей объясняется в значительной степени их кристаллической структурой. Крупнокристаллические материалы обладают большей магнитной проницаемостью и меньшей коэрцитивной силой, чем мелкокристаллические. Механическая же и термическая обработки позволяют, как известно, изменять размеры кристаллов, а следовательно, а магнитные свойства ферромагнитных материалов. При механической обработке и закалке стали в металле возникают внутренние напряжения, которые препятствуют при намагничивании свободной ориентации элементарных магнетиков в направлении поля. Это вызывает уменьшение магнитной проницаемости и увеличение коэрцитивной силы.

Отжиг стали (нагрев с последующим медленным остыванием), наоборот, вызывает уменьшение внутренних напряжений и возрастание размеров кристаллов. В результате повышается магнитная проницаемость и уменьшается коэрцитивная сила. При горячей прокатке электротехнической стали происходит лишь слабая ориентация зерен стали в направлении прокатки. Такая изотропная сталь имеет приблизительно одинаковые Магнитные свойства в различных направлениях.

Путем повторной холодной прокатки стали и особой термической обработки (отжигом) изготовляют так называемую текстурованную сталь крупнокристаллического строения. В листе текстурованной стали 1 (рис. 353, б) отдельные кристаллы 2 расположены не беспорядочно, а имеют определенную пространственную ориентацию; ребрами куба они устанавливаются в направлении прокатки, вследствие чего направление прокатки совпадает с осью легкого намагничивания этой стали. Такая сталь называется анизотропной и при правильном ее использовании (если направление магнитного потока, проходящего через сердечник, составленный из стальных листов, совпадает с направлением их прокатки) имеет значительно большую магнитную проницаемость и меньшую коэрцитивную силу, чем нетекстурованная. Снижение толщины листа электротехнической стали благоприятно сказывается на снижении потерь от вихревых токов.

Из листовой электротехнической стали 1-го класса изготовляют магнитопроводы различных контакторов реле и регуляторов, из стали 2-го класса — сердечники роторов и статоров электрических машин переменного тока и якорей машин постоянного тока, из стали 3-го класса — магнитопроводы силовых трансформаторов и статоры крупных синхронных машин.

Для изготовления остовов электрических машин постоянного тока применяют стальное литье с содержанием углерода до 1 %. Отлитые из такой стали изделия подвергают медленнрму отжигу. Сварные детали электрических машин изготовляют из конструкционной углеродистой или слаболегированной стали. Из листов этой же стали выполняют главные полюсы машин постоянного тока.

Ответственные детали электрических машин — валы якорей и роторов, стяжные шпильки, пружины — изготовляют из стали с повышенными механическими свойствами — легированной, содержащей в своем составе хром, никель, вольфрам и молибден.

В некоторых электротехнических устройствах возникает необходимость применения немагнитных материалов и, в частности, немагнитных стали или чугуна. Из них выполняют, например, крышки, кожуха и крепежные детали силовых трансформаторов. Для получения такой стали и чугуна в их состав вводят значительные добавки никеля(20—25 % для стали и 9—12 % для чугуна), которые способствуют созданию особой кристаллической структуры, препятствующей образованию областей самопроизвольного намагничивания. Немагнитная сталь и чугун являются парамагнитными материалами. Относительная магнитная проницаемость их составляет 1,05—1,2.