Системы управления электроприводами (часть 2)

Управляемый мостовой трехфазный выпрямитель

В симметричной (полностью управляемой) мостовой схеме диоды VD1 – VD6 заменим на тиристоры VS1 – VS6 (см. рис. 2.2, a). Как и в трехфазной нулевой схеме при работе на активную нагрузку, мостовой выпрямитель может иметь два различных режима работы: режимы прерывистого и непрерывного тока. На рис. 4.2, а, б пред­ставлены кривые выпрямленного напряжения и тока для трех значений углов α. Из ри­сунка следует, что прерывистый ток в нагрузке протекает при α >π /3.

Для области не­прерывного тока  (α ) среднее выпрямленное напряжение равно:

.                          (4.3)

В выражении (4.3) производится интегрирование линейного напряжения за ин­тервал проводимости тиристора. В режиме прерывистого тока (α > π/З) мгновенное значение выпрямленного напряжения равно нулю при θ = π в соответствии с кривой вторичного напряжения трансформатора. Для этого случая имеем:

,                              (4.4)

предельным углом регулирования, при котором Ud = 0, является угол  α = 120°.

Для нормальной работы мостовой схемы необходимо подавать на управляющие электроды тиристоров импульсы шириной не менее 60° или сдвоенные импульсы, от­стающие друг от друга на указанный интервал (рис. 4.2, в, г). При запуске выпрями­теля импульс управления (например, при θ = θ1) подается на тиристор VS1 катодной группы. Однако VS1 не включается, так как в анодной группе все тиристоры заперты.

Через промежуток, равный 60° (θ = θ2), управляющий импульс поступает на тиристор VS2. Если в этот момент на управляющем электроде тиристора будут отсутствовать импульсы, VS2 не включится. В режиме прерывистого тока (см. рис. 4.2, a, б) также необ­ходимо подавать повторный управляющий импульс на соответствующий тиристор в противоположной группе. На рис. 4.2, в  показано положение импульсов для двух зна­чений углов управления.

При работе выпрямителя на обмотку возбуждения МПТ с большой индуктивно­стью ток нагрузки непрерывен во  всем диапазоне изменения α. В связи с этим среднее  выпрямленное напряжение может быть найдено по формуле (4.3).

Как уже указывалось, в мостовой схеме можно использовать только поло­вину тири­сторов катодной или анодной группы.  Полу­чающаяся при этом несим­метричная   (полууправляемая) мостовая схема имеет более простую систему управ­ления и мень­шую стоимость. На рис. 4.3 представ­лены кривые мгновенных вы­прямленных напряжений анодной (uda), катодной (udk) групп тиристоров и результирую­щего напряжения (ud) для случая, когда тиристоры VS1, VS3, VS5 – управляемые, а VS2, VS4, VS6 – неуправляемые (см. рис. 2.2, а). Коммута­ция тиристоров катодной группы происходит в моменты подачи управляющих импуль­сов, тиристоров анодной группы – в точках естественной коммутации К1, К2, К3 и т.д.

Так же, как в симметричной схеме, при работе полууправляемого выпрямителя на активную нагрузку наступает режим прерывистого тока при . Средняя вели­чина выпрямленного напряжения определяется для областей прерывистого и непре­рывного тока одним выражением:

                                   (4.5)

Соотношение (4.5) показывает, что предельный угол регулирования, равен: αм= 180°. Из рис. 4.3, б следует, что в полууправляемой схеме, по сравнению с полностью управляемой, кратность пульсаций выходного напряжения снизилась в два раза (m=3) и стала такой же, как в трехфазной нулевой схеме, что требует применения более мощ­ных и громоздких фильтрующих элементов. Поэтому наиболее целесообразно исполь­зовать полууправляемую схему для регулирования выходных параметров МПТ в не­больших пределах. Регулировочная характеристика выпрямителя с неполным числом тиристоров не зависит от характера нагрузки и при работе его на обмотку возбуждения машины также описывается выражение
м (4.5).

Преимуществом полууправляемой мостовой схемы являются меньшая реактив­ная мощность, потребляемая из сети.

Для сравнительной оценки выпрямительных схем рассмотрим их регулировочные харак­теристики (рис. 4.4). При работе на обмотку возбуждения или якорь с большой индуктивностью среднее выпрямлен­ное напряжение всех схем является косинусоидальной  зависимо­стью от угла регулирования α. Вид ре­гулиро­вочных характеристик можно изме­нять в зависимости от способа управ­ления выпрямителем, а также пу­тем введения различных обратных свя­зей.

Режим прерывистого тока в на­грузке наступает при тем больших уг­лах управления, чем больше фаз­ность выпрямителя (m). Существенным недос­татком выпрямителей с естест­венной коммутацией тиристоров является зна­чительное потребление из сети реактив­ной мощности при глубоком регулировании угловой скорости и мо­мента электриче­ской машины.