§27. Основные части электрических машин и их назначение

Конструктивное выполнение машины. Основными частями машины постоянного тока являются: остов (станина), полюсы, якорь, щеточный аппарат и некоторые вспомогательные детали, служащие для конструктивного оформления машины. Электрические машины общего применения (рис. 74) обычно имеют цилиндрическую форму и снабжены приливами для установки на фундамент или фланцами для крепления.

Тяговые электрические машины имеют те же основные части, но их конструкция приспособлена к особенностям установки этих машин на локомотивах. Например, тяговые двигатели электровозов (рис. 75), тепловозов и электропоездов устанавливают на тележках экипажной части локомотива, поэтому в их конструкции предусматривают специальные элементы для монтажа двигателя на тележке и передачи его вращающего момента на движущую колесную пару. В тяговых генераторах тепловозов (рис. 76) вал якоря имеет

Рис. 74. Устройство машины постоянного тока: 1 — коллектор; 2 — щетки; 3 — сердечник якоря; 4 — главный полюс; 5 — катушка обмотки возбуждения; 6 — остов; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря Рис. 74. Устройство машины постоянного тока: 1 — коллектор; 2 — щетки; 3 — сердечник якоря; 4 — главный полюс; 5 — катушка обмотки возбуждения; 6 — остов; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря

Рис. 75. Устройство тягового двигателя постоянного тока: 1 — вал якоря; 2 — остов; 3 — подшипниковый щит; 4 — обмотка главного полюса; .5 — главный полюс; 6 — роликовый подшипник; 7 — сердечник якоря; 8 — обмотка добавочною полюса; 9 — добавочный полюс; 10—щеткодержатель; 11 — коллектор Рис. 75. Устройство тягового двигателя постоянного тока: 1 — вал якоря; 2 — остов; 3 — подшипниковый щит; 4 — обмотка главного полюса; .5 — главный полюс; 6 — роликовый подшипник; 7 — сердечник якоря; 8 — обмотка добавочною полюса; 9 — добавочный полюс; 10—щеткодержатель; 11 — коллектор

Рис. 76. Продольный разрез тягового генератора тепловоза: 1 — остов; 2 — главный полюс; 3 — добавочный полюс; 4 — барабан; 5 — сердечник якоря; 6 — обмоткодержатель; 7—сварной кожух; 8— фланец; 9 — вал; 10 — подшипник; 11 — коллекторная пластина; 12— обмотка якоря; 13— подшипниковый щит; 14— щеткодержательРис. 76. Продольный разрез тягового генератора тепловоза: 1 — остов; 2 — главный полюс; 3 — добавочный полюс; 4 — барабан; 5 — сердечник якоря; 6 — обмоткодержатель; 7—сварной кожух; 8— фланец; 9 — вал; 10 — подшипник; 11 — коллекторная пластина; 12— обмотка якоря; 13— подшипниковый щит; 14— щеткодержатель

Рис. 77. Остовы тяговых двигателей с установленными полюсами при опорно-осевом подвешивании (а) и при рамном подвешивании (б): 1—остов; 2 — главный полюс; 3 — добавочный полюс; 4 — люк для осмотра коллектора; 5 — приливы для моторно-осевых подшипников; 6,8 — кронштейны для подвешивания двигателя на раме тележки; 7 — прилив для крепления коробки с выводными зажимами; 9 — выступы для установки двигателя Рис. 77. Остовы тяговых двигателей с установленными полюсами при опорно-осевом подвешивании (а) и при рамном подвешивании (б): 1—остов; 2 — главный полюс; 3 — добавочный полюс; 4 — люк для осмотра коллектора; 5 — приливы для моторно-осевых подшипников; 6,8 — кронштейны для подвешивания двигателя на раме тележки; 7 — прилив для крепления коробки с выводными зажимами; 9 — выступы для установки двигателя

только один подшипник; второй опорой якоря является подшипник дизеля, вал которого жестко соединен с валом якоря генератора фланцем.

Остов. В современных электрических машинах остов отливают из стали. Он составляет часть магнитной системы машины и служит для укрепления полюсов с катушками и выводных зажимов, а также для поддержания боковых щитов, несущих подшипники якоря.

Остовы тяговых генераторов тепловозов имеют цилиндрическую форму и снабжены двумя приливами для установки генератора на общую с дизелем раму. Остовы тяговых двигателей (рис. 77) обычно выполняют восьмигранными или цилиндрическими. В них имеются приспособления для монтажа двигателя на тележке, люки для осмотра коллектора и щеток, отверстия для подвода и выхода наружу охлаждающего воздуха и пр. Внутри остова предусмотрены обработанные приливы для установки полюсов, обеспечивающие строго симметричное расположение их на машине. В торцовых стенках остова имеются горловины для установки и крепления подшипниковых щитов.

Полюсы. В современных стационарных и тяговых машинах постоянного тока устанавливают главные и добавочные полюсы.

Главные полюсы (рис. 78, а), на которых расположены катушки обмотки возбуждения, служат для создания в машине магнитного потока возбуждения. Часть сердечника главного полюса со стороны, обращенной к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока по поверхности якоря.

Сердечники главных полюсов для уменьшения вихревых теков изготовляют шихтованными — из отдельных стальных листов толщиной 0,5—1,5 мм. По краям полюсов устанавливают более толстые торцовые боковины, которые посредством заклепок удерживают полюсные листы в спрессованном состоянии.

Возникновение вихревых токов в сердечниках главных полюсов объясняется изменением (пульсацией) магнитного поля в полюсных наконечниках, прилегающих к якорю при его вращении. Вследствие

Рис. 78. Главный (а) и добавочный (б) полюсы: 1 – сердечник главного полюса; 2 – катушка главного полюса; 3 – корпусная изоляция катушки; 4 – установочные болты; 5 – опорный угольник; 6 – сердечник добавочного полюса; 7 – катушка добавочного полюсаРис. 78. Главный (а) и добавочный (б) полюсы: 1 – сердечник главного полюса; 2 – катушка главного полюса; 3 – корпусная изоляция катушки; 4 – установочные болты; 5 – опорный угольник; 6 – сердечник добавочного полюса; 7 – катушка добавочного полюса

зубчатости якоря магнитное поле в местах, расположенных против зубов, усиливается (индукция возрастает), а в местах, расположенных против пазов, ослабляется (индукция уменьшается). При вращении якоря против каждой точки поверхности полюсного наконечника оказывается попеременно то зубец, то паз, вследствие чего индукция магнитного поля в отдельных точках наконечника непрерывно изменяется. Это и вызывает появление вихревых токов в стали наконечника.

Электрические машины могут иметь два, четыре, шесть и в общем случае 2р главных полюсов. Главные полюсы укрепляют на остове болтами. В машинах небольшой и средней мощности резьбу под болты нарезают непосредственно в сердечнике полюса (рис. 79, а). В более мощных машинах (тяговых двигателях и тяговых генераторах) болты ввертывают в специальные установочные стержни (один или два на полюс), закладываемые в сердечник при его сборке (рис. 79, б).

Остов, полюсы и якорь составляют магнитную систему машины, через которую замыкается магнитный поток, созданный обмоткой возбуждения. Воздушный зазор между якорем и полюсами является также одним из участков магнитной цепи.

Расположение главных полюсов и распределение магнитного потока в четырехполюсной машине поясняются рис. 80, а и б. Соседние (разноименные) полюсы в четырехполюсной машине расположены под углом 90°, а двухполюсной — под углом 180°. Линия, делящая эти углы пополам, называется геометрической нейтралью. Магнитный поток Ф, проходящий через полюсы и поступающий в якорь и остов, разделяется по оси симметрии полюсов на две симметричные и равные части. У всех современных машин с симметричными магнитными системами число полюсов 2р всегда четное, все полюсы совершенно одинаковы и углы между осями соседних полюсов равны.

Добавочные полюсы (см. рис. 78, б) обеспечивают уменьшение искрения, возникающего при работе машины (см. § 30). По своим размерам они меньше главных. Число добавочных полюсов обычно равно числу главных. В машинах постоянного тока сердечники до-

Рис. 79. Сердечники главных полюсов: 1 — заклепки; 2 — установочный болт; 3 — сердечник полюса; 4 отверстие под установочные болты; 5— полюсный наконечник; 6— установочный стержень; 7 - боковинаРис. 79. Сердечники главных полюсов: 1 — заклепки; 2 — установочный болт; 3 — сердечник полюса; 4 отверстие под установочные болты; 5— полюсный наконечник; 6— установочный стержень; 7 – боковина

Рис. 80. Магнитная система машины постоянного тока: 1 — полюсы; 2 — остов; 3 — якорь; 4 — обмотка возбуждения; 5 — воздушный зазор Рис. 80. Магнитная система машины постоянного тока: 1 — полюсы; 2 — остов; 3 — якорь; 4 — обмотка возбуждения; 5 — воздушный зазор

бавочных полюсов изготовляют из стали. Они имеют монолитную конструкцию, так как значение индукции под добавочными полюсами выбирается обычно небольшим и при вращении якоря индуцирования вихревых токов в их наконечниках практически не происходит. Однако в тяговых двигателях электровозов переменного тока, работающих при пульсирующем напряжении, сердечники добавочных полюсов выполняют шихтованными — из изолированных листов электротехнической стали толщиной 0,5 мм. Этим обеспечивается существенное уменьшение вихревых токов, возникающих при прохождении по обмотке добавочных полюсов пульсирующего тока.

Катушки полюсов изготовляют из изолированного медного провода круглого или прямоугольного сечения или из шинной меди.

Площадь поперечного сечения проводников и число витков катушек зависят от типа, мощности и напряжения машины. Отдельные витки катушек изолируют друг от друга (межвитковая изоляция), кроме того, на катушку еще накладывают общую корпусную изоляцию 3 (см. рис. 78). Катушки всех главных полюсов обычно соединяются последовательно и составляют обмотку возбуждения машины. Катушки добавочных полюсов также соединяют последовательно.

В современных тяговых электрических машинах постоянного и пульсирующего тока часто применяют компенсационную обмотку, улучшающую условия работы коллектора и щеток (см. § 29). Ее располагают в пазах, проштампованных в полюсных наконечниках, и выполняют в виде отдельных катушек из прямоугольной меди (рис. 81). Катушки крепят в пазах текстолитовыми клиньями.

Якорь. Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря (рис. 82) собран из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого. Листы собирают в общий пакет, который насаживают на вал якоря. Пакет удерживается в сжатом состоянии нажимными шайбами. В теле якоря делают вентиляционные каналы для прохода охлаждающего воздуха. В машинах постоянного тока боль-

Рис. 81. Главный полюс в машинах с компенсационной обмоткой (а) и общий вид этой обмотки (б): 1 - паз для катушки компенсационной обмотки; 2 - полюсный наконечник; 3 — корпусная изоляция катушки возбуждения; 4 - проводники катушки возбуждения; 5 - немагнитная прокладка; 6 — остов; 7, 8 — катушка и вывод компенсационной обмоткиРис. 81. Главный полюс в машинах с компенсационной обмоткой (а) и общий вид этой обмотки (б): 1 – паз для катушки компенсационной обмотки; 2 – полюсный наконечник; 3 — корпусная изоляция катушки возбуждения; 4 – проводники катушки возбуждения; 5 – немагнитная прокладка; 6 — остов; 7, 8 — катушка и вывод компенсационной обмотки

Рис. 82. Сердечник якоря машины постоянного тока без обмотки (а); сборка якоря (б); стальные листы якоря (в): 1 – вал якоря; 2 – место для установки коллектора; 3, 5 – нажимные шайбы (обмотко-держатели); 4 – сердечник якоря; 6 – лаковая пленка; 7 – стальной лист; 8 – сегмент сердечника. Рис. 82. Сердечник якоря машины постоянного тока без обмотки (а); сборка якоря (б); стальные листы якоря (в): 1 – вал якоря; 2 – место для установки коллектора; 3, 5 – нажимные шайбы (обмотко-держатели); 4 – сердечник якоря; 6 – лаковая пленка; 7 – стальной лист; 8 – сегмент сердечника.

Рис. 83. Устройство обмотки якоря: а, б- укладка якорных катушек; в - изоляция; 1 - якорные катушки; 2 - коллектор 3 — сердечник якоря; 4,5- верхняя и нижняя стороны катушки; 6,7,9 - покровная корпусная и витковая изоляция; 8 - медные проводники Рис. 83. Устройство обмотки якоря: а, б- укладка якорных катушек; в – изоляция; 1 – якорные катушки; 2 – коллектор 3 — сердечник якоря; 4,5- верхняя и нижняя стороны катушки; 6,7,9 – покровная корпусная и витковая изоляция; 8 – медные проводники

шой мощности с якорями большого диаметра листы, из которых собирают сердечник якоря, имеют форму сегментов 8. Сегменты собирают на шпильках, образуя полную окружность якоря, и сжимают нажимными шайбами; при сборке пакета якоря стыки между сегментами одного слоя располагаются против середины сегментов предыдущего слоя, благодаря чему уменьшается магнитное сопротивление сердечника якоря.

Якорные листы имеют зубчатую форму, поэтому при сборке их в пакеты образуются пазы (впадины), в которые укладывают обмотку якоря. Пазы бывают открытые и полузакрытые. Тяговые электрические машины имеют открытые пазы. Для улучшения коммутации и снижения магнитного шума в некоторых машинах применяют якоря со скошенными пазами, т. е. пазы по длине сердечника смещаются на одно зубцовое деление.

В тяговых двигателях сердечник якоря, нажимные шайбы и коллектор обычно насаживают не на вал, а на промежуточную втулку, которую затем запрессовывают под давлением на вал. Применение промежуточной втулки дает возможность сменить неисправный вал без полной разборки якоря.

Обмотку якоря (рис. 83) выполняют из медной изолированной проволоки, в машинах большой мощности — из медных стержней. Обычно обмотка якоря состоит из отдельных якорных катушек, которые обматывают изоляционными лентами из миканита, асбеста, стеклоткани или хлопчатобумажной ткани и укладывают в пазы якоря. В каждом пазу укладывают обычно две стороны различных якорных катушек, одна поверх другой. Каждая якорная катушка включает в себя несколько секций, концы которых припаивают к соответствующим коллекторным пластинам.

Различают следующие виды изоляции катушек: витковая — изоляция каждого из проводников; корпусная — изоляция всей катушки относительно сердечника якоря и покровная — наружная изоляция, защищающая корпусную изоляцию от механических повреждений. После наложения обмотки якорь пропитывают изоляционными лаками (асфальтовым, бакелитовым и др.), благодаря чему повышается качество изоляции машины. В тяговых электрических машинах для изоляции обмотки якоря применяют монолитную изоляцию из материалов высокой нагревостойкости (стекло-слюдинистовое полотно), залитых эпоксидным компаундом горячего отвердения. Такая изоляция повышает надежность и долговечность электрических машин.

При вращении якоря обмотка может выпасть из пазов под действием возникающих центробежных сил. Чтобы предупредить выпадание обмотки, ее закрепляют изоляционными клиньями, а также проволочными бандажами или бандажами из стеклоленты (стекло-бандажами) (рис. 84). Якорные катушки изготовляют на специальных приспособлениях, позволяющих придавать им правильную и одинаковую форму (рис. 85).

Коллектор (рис. 86, а) выполнен из отдельных пластин 2 толщиной до 5—8 мм, изготовленных из твердотянутой меди или кадмиевой

Рис. 84. Крепление обмотки якоря изоляционными клиньями (а) и проволочными бандажами (б); 1 – текстолитовый клин; 2 – сердечник якоря; 3 – якорная катушка; 4 – проволочный бандаж; 5 – бандажная проволока Рис. 84. Крепление обмотки якоря изоляционными клиньями (а) и проволочными бандажами (б); 1 – текстолитовый клин; 2 – сердечник якоря; 3 – якорная катушка; 4 – проволочный бандаж; 5 – бандажная проволока

Рис. 85. Общий вид якорных катушек: а, б - при многовитковых и одновитковых секциях; в - при обмотке с разрезными секциями Рис. 85. Общий вид якорных катушек: а, б – при многовитковых и одновитковых секциях; в – при обмотке с разрезными секциями

Рис. 86. Общий вид коллектора машины постоянного тока (а); расположение коллекторных пластин и изоляционных прокладок (б) и коллектор в пластмассовом корпусе (в).Рис. 86. Общий вид коллектора машины постоянного тока (а); расположение коллекторных пластин и изоляционных прокладок (б) и коллектор в пластмассовом корпусе (в).

Рис. 87. Неразрезные (а) и разрезные (б) щетки электрических машин: 1 - кабельный наконечник; 2 щеточный канатик; 3 — щетка; 4 — резиновый гаситель; 5 — нажимной палец; 6 — разрезная щетка; 7— обойма Рис. 87. Неразрезные (а) и разрезные (б) щетки электрических машин: 1 – кабельный наконечник; 2 щеточный канатик; 3 — щетка; 4 — резиновый гаситель; 5 — нажимной палец; 6 — разрезная щетка; 7— обойма

бронзы клинообразного сечения. Пластины изолируют одну от другой миканитовыми прокладками 4. К выступающей части коллекторной пластины припаивают провода от обмотки якоря. Для этого в ней имеется соответствующая прорезь. Узкие края пластины имеют форму ласточкина хвоста, после сборки коллектора эти края зажимаются между двумя нажимными шайбами. Пластины изолируют от нажимных шайб 3 и вала якоря миканитовыми манжетами 1 и цилиндрами. Когда коллектор окончательно собран, его поверхность обтачивают на токарном станке и тщательно шлифуют. Чтобы миканитовые прокладки при износе коллектора не выступали над пластинами и не вызывали вибрации щеток, их профрезеровывают на 0,8—1,5 мм ниже поверхности коллектора (рис. 86,б). Эту операцию называют продороживанием коллектора.

В машинах с большим диаметром якоря (в тяговых генераторах тепловозов) для соединения проводников обмотки якоря с пластинами коллектора предусматривают промежуточные звенья — гибкие медные пластины, называемые петушками. Петушки нижними концами прикрепляют к коллекторным пластинам, а в верхние их части впаивают проводники обмотки якоря.

Вращаясь, коллектор соприкасается со щетками и постепенно изнашивается. Кроме того, при работе коллектор нагревается, и возникающие при этом механические напряжения могут вызвать его деформацию, следствием которой будет вибрация щеток, плохой их контакт с коллектором и значительное искрение. Поэтому в эксплуатации периодически выполняют обточку коллекторов.

В машинах малой и средней мощности, например в тяговых двигателях электропоездов и во вспомогательных машинах, широко применяют коллекторы с пластмассовым корпусом (рис. 86, в). В этих коллекторах медные пластины 2 и миканитовые прокладки опрессованы пластмассой 5, обладающей большой механической и электрической прочностью. Для посадки коллектора на вал служит стальная втулка б, которую вставляют в пресс-форму перед запрессовкой пластин в пластмассу.

Щеточный аппарат. Щетки предназначены для соединения коллектора с внешней цепью. Они представляют собой прямоугольные призмы шириной 4—32 мм (рис. 87, а). Рабочую поверхность щеток пришлифовывают к коллектору, чтобы обеспечить надежный контакт. Каждая щетка имеет определенную марку. Щет­ки различных марок различаются составом, способом изготовления и физическими свойствами.

Щетки, применяемые для электрических машин, подразделяются на четыре основные группы: угольно-графитные, графитные, электро-графитированные и металлографитные. Для каждой машины, рабо­тающей в определенных условиях, нужно применять щетки только соответствующих марок. Эти марки подбираются заводом — изгото­вителем машин; при замене изношенных щеток нужно брать щетки той же марки. В тяговых электрических машинах применяют исклю­чительно электрографитированные щетки, которые обладают хоро­шими коммутирующими свойствами, значительной механической прочностью и способностью выдерживать большие перегрузки.

Щетки устанавливают в специальные обоймы, называемые щеткодержателями (рис. 88, а). Для отвода тока от щетки к ней прикрепляют медный гибкий проводник (щеточный канатик), кото­рый присоединяют к щеткодержателю. Одним из основных условий хорошей работы щеток является плотный, надежный контакт меж­ду щеткой и коллектором. Он достигается при помощи нажимного устройства, смонтированного на щеткодержателе. Нажим на щетку осуществляется пружиной (спиральной, цилиндрической или пластинчатой), упирающейся одним концом в щетку, а другим — в щеткодержатель. В тяговых двигателях нажимная пружина воздей­ствует на специальный палец, прижимаемый к верхней торцовой поверхности щетки (рис. 88,б). Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недо­статочный нажим не дает надежного контакта между щеткой и кол­лектором, вследствие чего возникает искрение под щеткой. Нажатие принимают из расчета 1,5—3,5 Н на 1 см2 опорной поверхности щетки. Для улучшения щеточного контакта и предотвращения искре­ния щеток в некоторых случаях применяют разрезные щетки (рис. 87,б). Такая щетка состоит из двух частей, установленных

Рис. 88. Щеткодержатели вспомогательных машин (а) и тяговых двигателей (б): 1 — изолятор; 2 — пружина;	натяжное устройство; 4 — обойма; 5 — щетка; 6 — щеточный палец; 7 — нажимной малец; 8 — щеточный канатик; 9 - кронштейн Рис. 88. Щеткодержатели вспомогательных машин (а) и тяговых двигателей (б): 1 — изолятор; 2 — пружина; натяжное устройство; 4 — обойма; 5 — щетка; 6 — щеточный палец; 7 — нажимной малец; 8 — щеточный канатик; 9 – кронштейн

Рис. 89. Установка щеткодержателей на поворотной щеточной траверсе: 1 – траверса; 2 – стопорный болт; 3 – щеткодержатели; 4 – палец щеткодержателя; 5 – зубчатый венецРис. 89. Установка щеткодержателей на поворотной щеточной траверсе: 1 – траверса; 2 – стопорный болт; 3 – щеткодержатели; 4 – палец щеткодержателя; 5 – зубчатый венец

в общую обойму. Равномерное нажатие на отдельные части щетки обеспечивается резиновым гасителем 4.

Щеткодержатели укрепляют на кронштейнах и щеточных пальцах непосредственно к остову машины (в четырехполюсных тяговых двигателях) или к боковым подшипниковым щитам и изолируют от них специальными изоляторами 1 (см. рис. 88). В некоторых тяговых и стационарных машинах щеткодержатели устанавливают на поворотных траверсах (рис. 89, а и б), прикрепляемых к боковым щитам. Поворотом траверсы обеспечивается возможность некоторого перемещения щеток по окружности коллектора. Благодаря этому можно подобрать наивыгоднейшее положение щеток, при котором искрение под щетками при данном режиме работы будет минимальным. Применение поворотной траверсы облегчает также осмотр щеткодержателей и замену в них щеток.

Кроме описанных выше частей, в электрических машинах имеется ряд конструктивных деталей: подшипники, подшипниковые щиты (крышки), смазочные и маслозащитные устройства и т. п.

Подшипники. В тяговых двигателях, тепловозных генераторах и вспомогательных машинах обычно устанавливают шариковые и роликовые подшипники (рис. 90), очень надежные и требующие небольшого ухода. Подшипники помещают в специальных подшипниковых щитах, которые прикрепляют к обеим сторонам остова.

Для смазки подшипников применяют в большинстве случаев густую консистентную смазку. Эта смазка не требует большого объема смазочных камер, и запас ее, закладываемый в подшипник, при периодических ревизиях двигателя оказывается вполне достаточным для работы машины без замены смазки до следующей ревизии. Для предотвращения выхода смазки из смазочных камер в тяговых машинах применяют гидравлические (лабиринтовые) уплотнения. Действие этих уплотнений основано на вязкости смазки, попавшей в небольшой зазор между вращающейся и неподвижной деталями, а также на создании самой смазкой гидравлических перегородок вследствие отбрасывания ее к стенкам лабиринта под действием центробежной силы, возникающей при вращении якоря.

Устройство для охлаждения электрических машин. В большинстве электрических машин для охлаждения нагретых частей (сердечника и обмотки якоря, коллектора и полюсов) на валу якоря устанавливают вентилятор. Такой способ охлаждения электрических машин называется самовентиляцией, а машины этого типа — машинами с самовентиляцией. Тяговые двигатели электропоездов и вспомогательные машины, установленные на электровозах и тепловозах, являются машинами с самовентиляцией. В этих машинах засасываемый воздух поступает внутрь машины обычно со стороны коллектора и распределяется на два параллельных потока (рис. 91, а). Один из таких потоков омывает поверхность коллектора, катушки полюсов и пространство между полюсами и якорем. Другой поток проходит под коллектором и по вентиляционным каналам внутри сердечника якоря. Нагретый воздух выбрасывается через отверстия, имеющиеся в остове и подшипниковом щите со стороны, противоположной коллектору, или же через специальный патрубок, прикрепленный к остову машины.

В тяговых двигателях электровозов и тепловозов для улучшения охлаждения воздух в машину нагнетают извне вентилятором (рис. 91, б), приводимым во вращение отдельным электродвигателем (мотор-вентилятором). Такие машины называются машинами с независимой вентиляцией.

Рис. 90. Установка роликовых подшипников в тяговых двигателях: 1 — подшипник; 2 — подшипниковый щит; 3 — лабиринтовое уплотнение; 4 — смазка Рис. 90. Установка роликовых подшипников в тяговых двигателях: 1 — подшипник; 2 — подшипниковый щит; 3 — лабиринтовое уплотнение; 4 — смазка

Рис. 91. Схемы прохождения охлаждающего воздуха в машинах с самовентиляцией (а) и независимой вентиляцией (б): 1 — вход воздуха; 2 — выход воздуха; 3 — вентилятор; 4 — сердечник якоря; 5 — полюсы; 6 -_ коллектор; 7 — внешний вентилятор; 8 — воздухопровод; 9 — тяговый двигательРис. 91. Схемы прохождения охлаждающего воздуха в машинах с самовентиляцией (а) и независимой вентиляцией (б): 1 — вход воздуха; 2 — выход воздуха; 3 — вентилятор; 4 — сердечник якоря; 5 — полюсы; 6 коллектор; 7 — внешний вентилятор; 8 — воздухопровод; 9 — тяговый двигатель

При такой вентиляции воздух распределяется внутрь машины двумя параллельными потоками, как и при самовентиляции.

Охлаждение оказывает большое влияние на работу электрических машин. Мощность, которую можно получить от электрической машины, ограничена предельной температурой, которую может выдержать изоляция ее обмоток. Поэтому при интенсивном охлаждении значительно снижается нагрев обмотки, что позволяет повысить мощность, которую может отдать машина.