Если частица с зарядом q переносится в электрическом поле вдоль некоторого пути, то действующие на нее силы поля совершают работу. Отношение этой работы к переносимому заряду представляет физическую величину, называемую электрическим напряжением. При перемещении частицы по пути dl (рис. 1.1) силы поля совершают работу
Через обозначен вектор, равный по величине элементу пути dl и направленный по касательной к пути в сторону перемещения заряженной частицы. Угол a есть угол между векторами
и
.
Работа, совершаемая силами поля при перемещении частицы вдоль всего пути от точки А до точки В (рис. 1.1), равна
Она пропорциональна линейному интегралу напряженности поля вдоль заданного пути. Этот линейный интеграл равен электрическому напряжению вдоль заданного пути от А до В. Принято обозначать напряжение буквой u.
Таким образом,
Следовательно,
Таким образом, электрическое напряжение представляет собой физическую величину, характеризующую электрическое поле вдоль рассматриваемого пути и равную линейному интегралу напряженности электрического поля вдоль этого пути.
Единицей напряжения является вольт (В).
Из сказанного вытекает, что значение напряженности электрического поля равно падению напряжения, отнесенного к единице длины линии напряженности поля.
Рассмотрим теперь величины, именуемые электрическим потенциалом и разностью электрических потенциалов.
В электростатическом поле линейный интеграл напряженности поля по любому замкнутому контуру равен нулю:
(1.3)
или в дифференциальной форме
,
(1.4)
где l – контур интегрирования. Величина, стоящая в левой части последнего уравнения называется вихрем или ротором.
Это важное свойство электростатического поля вытекает из принципа сохранения энергии.
Условие (1.3) или (1.4) говорит о том, что в электростатическом поле линейный интеграл от вектора напряженности поля, взятый от любой точки А до любой точки В, не зависит от выбора пути интегрирования и полностью определяется в заданном поле положением точек А и В. Это обстоятельство позволяет ввести понятие о потенциале электростатического поля. Потенциал электростатического поля в точке А определяется как линейный интеграл вектора , взятый от точки А до некоторой точки Р
.
(1.5)
Потенциал в точке Р равен нулю.
Линейный интеграл вектора напряженности поля вдоль некоторого пути от точки А до точки В есть разность потенциалов в точках А и В:
.
(1.6)