§88. Режимы работы синхронного генератора и его характеристики

Холостой ход. Э. д. с, индуцированная в каждой фазе обмотки якоря синхронного генератора, при холостом ходе

E0 = cEФвn (88)

где

cE — постоянная величина, зависящая от конструкции машины (числа витков обмотки якоря, числа полюсов и др.);

Фв — магнитный поток, создаваемый обмоткой возбуждения.
Регулирование напряжения и частоты. Из формулы (88) следует, что регулировать э. д. с. (напряжение генератора) можно двумя способами: изменением частоты вращения п или изменением магнитного потока возбуждения Фв. Для изменения потока возбуждения в цепь обмотки возбуждения включают регулировочный реостат (см. рис. 284) или автоматически действующий регулятор напряжения, которые позволяют изменить ток возбуждения, поступающий в эту обмотку, а следовательно, и создаваемый ею поток. Регуляторы напряжения широко применяют для регулирования возбуждения генераторов, работающих при переменной частоте вращения, т. е. генераторов, приводимых во вращение от дизеля (на тепловозах) или от колесной пары (на пассажирских вагонах). При изменении частоты вращения п и нагрузки машины они автоматически изменяют ток возбуждения Iв, т. е. поток Фв, так, чтобы напряжение генератора было стабильным или изменялось по заданному закону.

Регулирование частоты f1, как следует из формулы (86), осуществляется изменением частоты вращения ротора.

Работа машины при нагрузке. При увеличении нагрузки синхронного генератора напряжение его изменяется. Это изменение происходит по двум причинам. При протекании тока нагрузки по обмотке якоря создается так же, как и в асинхронной машине, вращающееся магнитное поле, т. е. свой магнитный поток якоря Фя. Поток якоря Фя и поток возбуждения Фв вращаются с одинаковой частотой и создают, следовательно, некоторый результирующий поток Фрез = Фяв. В результате э. д. с. машины Е = сЕФрезn, т. е. будет отличаться от э. д. с. Е0 при холостом ходе.

Воздействие потока якоря на результирующий поток синхронной машины называется реакцией якоря. Так как под действием реакции якоря изменяется результирующий поток в машине, то и напряжение генератора будет зависеть от тока, проходящего по обмотке якоря, и его сдвига фаз относительно напряжения. Когда ток в обмотке якоря совпадает по фазе с э. д. с. холостого хода Е0 (рис. 288,а), поток Фя действует по поперечной оси машины q — q; он размагничивает одну половину каждого полюса и под-магничивает другую. Результирующий поток Фрез в этом случае из-за насыщения магнитной цепи машины несколько уменьшается по сравнению с Фв.

В случае когда ток в обмотке якоря отстает от Е0 на 90° (рис. 288, б), поток якоря Фя действует по продольной оси машины против Фв, т. е. уменьшает результирующий поток (размагничивает машину); если ток в обмотке якоря опережает Е0 на 90° (рис. 288, в), поток Фя совпадает по направлению с Фв, т. е. увеличивает поток Фрез (подмагничивает машину). Если ток якоря отстает или опережает э. д. с. Е0 на угол, меньший 90°, то это можно рассматривать как сочетание рассмотренных случаев. В общем случае если ток якоря отстает от напряжения, то реакция якоря действует размагничивающим образом. Она уменьшает результирующий поток и напряжение генератора. Когда ток опережает напряжение, то реакция якоря увеличивает результирующий поток и напряжение генератора.

Второй причиной изменения напряжения генератора при его нагрузке являются внутренние падения напряжения в обмотке

Рис. 288. Реакция якоря синхронной машины при различном характере нагрузкиРис. 288. Реакция якоря синхронной машины при различном характере нагрузки

якоря — активное и реактивное. Эти падения напряжения возникают в синхронной машине по тем же причинам, что и в асинхронном двигателе и трансформаторе.

Внешние характеристики синхронного генератора (рис. 289) представляют собой зависимости изменения напряжения генератора U от тока нагрузки Iя при постоянных значениях т, Iв и cos?. Коэффициент мощности cos?, при котором работает генератор, определяется характером его нагрузки (соотношением между активным и реактивным сопротивлениями потребителей). При активной нагрузке напряжение генератора с ростом тока нагрузки уменьшается по кривой 2, а при активно-индуктивной — по кривой 1; чем больше угол сдвига фаз ? между током Iя и напряжением U, тем сильнее размагничивающее действие реакции якоря и тем ниже идет кривая напряжения. При активно-емкостной нагрузке, когда ток Iя опережает по фазе напряжение U, реакция якоря подмагничивает машину и напряжение U может даже возрастать по сравнению с U0 = E0 при холостом ходе (кривая 3).

В синхронных генераторах из-за значительной реакции якоря изменение напряжения во много раз больше, чем в трансформаторах. Обычно генераторы работают при cos? = 0,85-0,9 при отстающем токе, при этом ?U= 35-25% от Uном. При столь большом изменении напряжения для нормальной работы подключенных к генератору потребителей требуется применять специальные устройства для стабилизации его выходного напряжения, например быстродействующие регуляторы возбуждения.

Отдаваемая генератором мощность при одних и тех же значениях тока зависит от коэффициента мощности cos?, при котором работает генератор, т. е. от характера его нагрузки. Однако проводники генератора рассчитываются на определенный ток, а его изоляция и магнитная система — на определенное напряжение и магнитный поток независимо от cos ср нагрузки. По этой причине номинальной мощностью генератора считается его полная мощность S в киловольт-амперах (кВ*А), на которую рассчитана машина по условиям нагревания и длительной безаварийной работы. Регулировать активную мощность синхронного генератора при работе его на какую-либо нагрузку можно путем изменения сопротивления нагрузки или напряжения машины.

При передаче энергии от вала ротора синхронного генератора в обмотку статора в различных элементах машины возникают потери мощности (рис. 290). Потери имеют место в обмотках статора и ротора — электрические потери ?Рэл, в стали их сердечников — магнитные потери ?Рм и в трущихся элементах (подшипники, вентиляторы и пр.) — механические потери ?Рмх. К. п. д. синхронных машин находится в пределах от 0,85 до 0,95, т. е. имеет примерно те же значения, как и у асинхронных машин.

Короткое замыкание. При коротком замыкании синхронного генератора ток короткого замыкания Iк ограничивается внутренним сопротивлением обмотки якоря, которое имеет в основном индуктивный характер. Поэтому ток Iк отстает от напряжения

Рис. 289. Внешние характеристики синхронного генератора при различной нагрузкеРис. 289. Внешние характеристики синхронного генератора при различной нагрузке

Рис. 290. Энергетическая диаграмма синхронного генератораРис. 290. Энергетическая диаграмма синхронного генератора

на угол, близкий к 90°, и реакция якоря сильно размагничивает машину и резко уменьшает поток Фрез и э. д. с. генератора Е. В результате установившийся ток короткого замыкания в синхронных машинах сравнительно невелик (в некоторых машинах он меньше номинального), но из этого нельзя делать вывод, что короткое замыкание не опасно для генератора.

При внезапном коротком замыкании и уменьшении результирующего потока машины Фрез в обмотках возбуждения и демпферной индуцируются э. д. с. и возникают токи, которые согласно правилу Ленца препятствуют изменению потока Фрез. Поэтому этот поток и э. д. с. генератора уменьшаются сравнительно медленно, хотя машина уже замкнута накоротко. В результате ток в обмотке якоря в начальный момент короткого замыкания резко возрастает, а затем постепенно уменьшается. Наибольший ток Iк в начальный момент короткого замыкания называется ударным; он может превышать амплитуду номинального тока якоря в 10—15 раз.

Для ограничения ударного тока в цепь обмотки якоря иногда вводят дополнительную индуктивность (реактор).

Adblock
detector