Общие сведения о двигателях постоянного тока

Принцип действия (на примере двигателя параллельного возбуждения).  Если к двигателю подведено напряжение U, то по цепи возбуждения протекает ток Iв, а по цепи якоря – ток Iя. Ток возбуждения создает МДС Fв = Iв Wв, которая возбуждает в машине магнитный поток Фв. Ток якоря, в свою очередь, создает магнитный поток реакции якоря Фя. Результирующий магнитный поток Фрез = Фв +  Фя.

Рис.1.23                                                                Рис. 1.24

В цепи якоря ток  Iя создает падение напряжения Rя Iя. В соответствии с законом электромагнитной силы ЭМС при взаимодействии тока Iя и магнитного потока Фрез создается вращающий момент Мвр. В  установившемся режиме Мвр. = Мпр. Когда проводники якоря пересекают магнитное поле Фрез, в них в соответствии с законом электромагнитной индукции ЭМИ наводится ЭДС, которая направлена против напряжения сети U.

Классификация двигателей. По схеме включения обмоток возбуждения главных полюсов двигатели постоянного тока делятся на двигатели независимого, параллельного, последовательного  и  смешанного возбуждения.

В двигателях независимого возбуждения обмотка возбуждения питается от отдельного источника постоянного напряжения. В двигателях параллельного возбуждения обмотка возбуждения и обмотка якоря включены параллельно и питаются от одного источника. В двигателях последовательного и смешанного возбуждения есть обмотка возбуждения, включенная  последовательно с обмоткой якоря. В двигателях малой мощности  поток возбуждения может быть создан с помощью постоянных магнитов. Наибольшее применение находят двигатели параллельного и смешанного возбуждения.

Основные уравнения и величины, характеризующие двигатели. Такими величинами являются: механическая мощность на валу Р2, питающее напряжение U, ток, потребляемый из сети I, ток якоря Iя, ток возбуждения Iв, частота вращения n, электромагнитный момент Мэм. Зависимость между этими величинами  описывается:

Ø  уравнением электромагнитного момента:

Мэм = См Iя Ф;

Ø  уравнением электрического состояния цепи якоря:

U = Епр +  Rя Iя;                                           (1.4)

Епр = СEnФ;

Ø  уравнением моментов:

Мэм = Мс + Мпот + Мд,

где Мс – момент сопротивления на валу, создаваемый нагрузкой; Мпот – момент потерь, создаваемый всеми видами потерь в двигателе; Мд – динамический момент, создаваемый инерционными силами;

Характеристики двигателей. Важнейшей из характеристик является механическая n (Мс) – зависимость частоты вращения n от момента на валу (далее индекс «с» опускается) при U = const, Iв = const. Она показывает влияние механической нагрузки (момента) на валу двигателя на частоту вращения, что особенно важно знать при выборе и эксплуатации двигателей. Другие характеристики двигателей: регулировочная n (Iв), скоростная n (Iя), рабочие М, Р1, n , I, h(Р2) – здесь подробно не рассматриваются.

Механические характеристики могут быть естественными и искусственными. Под естественными характеристиками понимаются характеристики, снятые при отсутствии в схеме каких-либо дополнительных сопротивлений, например, реостатов в цепях якоря или возбуждения,  искусственными – при наличии таких сопротивлений.

Уравнение механической характеристики двигателя. Оно может быть получено из (1.1). Подставим вместо Е ее значение в (1.4), тогда

n = (U – Rя Iя)/СЕФ.                                      (1.5)

Заменяя Iя его значением из (1.2), получаем уравнение механической характеристики:

n = (1.6)

Вид механической характеристики определяется характером зависимости потока отнагрузки двигателя, что в свою очередь зависит от схемы включения обмотки возбуждения.

Реверсирование двигателя. Под реверсированием двигателя понимают изменение направления вращения  его якоря. Возможные способы реверсирования вытекают из соотношения (1.2). Если изменить направление тока якоря или потока машины, то знак, а следовательно, и направление вращающего момента изменяется. Практически это достигается переключением выводов или обмотки якоря, или обмотки возбуждения. Однако одновременное переключение выводов обеих обмоток или изменение полярности питающего двигатель напряжения (кроме двигателя независимого возбуждения) к изменению знака вращающего момента и, следовательно, к изменению направления вращения не приводит.

Пуск в ход двигателей постоянного тока. К пуску двигателей предъявляются два основных требования: обеспечить необходимый для трогания с места и разгона якоря вращающий момент и не допустить при пуске протекания через якорь чрезмерно большого тока, опасного для двигателя. Практически возможны три способа пуска: прямой пуск, пуск при включении реостата в цепь якоря и пуск при пониженном напряжении в цепи якоря.

При прямом пуске цепь якоря включается сразу на полное напряжение. Так как в первый момент пуска якорь неподвижен (n = 0), то противо-ЭДС отсутствует            (Епр = СЕ nФ). Тогда из (1.4) следует, что пусковой ток якоря Iя,п = U/Rя.

Так как Rя = 0,02 ¸ 1,10 Ом, то Iя,п = (50 ¸100) Iном, что недопустимо. Поэтому прямой пуск возможен только у двигателей малой мощности, где Iя,п (4¸6) Iном и разгон двигателя длится менее 1 с.

Пуск при включении пускового реостата Rп последовательно с якорем рассмотрим на примере схемы рис. 1.25. Пусковой ток в этом случае равен:

Iя,п = U/( Rя + Rп).                                         (1.7)

Сопротивление Rп = U/ Iя,п – Rя выбирают таким, чтобы в начальный момент пуска, когда Епр = 0,  Iя,п = (1,4¸2,5) Iном (большее число относится к двигателям меньшей мощности).

По мере разгона якоря  возрастает Епр, которая  снижает напряжение на якоре (т.е. уменьшается числитель (1.7)), а сопротивление реостата Rп выводится.

Перед пуском реостат Rр выводится, что необходимо для обеспечения  максимального потока и, следовательно, момента при пуске (Мп = См Iя,п Ф). По мере разгона якоря реостат Rр вводится до достижения требуемой частоты вращения.

Пуск с ограниченным пусковым током возможен при питании якоря двигателя от отдельного источника (генератора, выпрямителя) с регулируемым напряжением. Ограничение пускового тока и плавный разгон двигателя обеспечиваются постепенным повышением напряжения на якоре от нуля до требуемого значения.

Рассматриваемый метод находит применение в системах управления и регулирования мощных двигателей постоянного тока (см. п.1.14.3).

Adblock
detector