Полупроводниковые диоды

Основой полупроводникового диода является рn-переход, определяющий его свойства, характеристики и параметры. В зависимости от конструктивных особенностей рn-перехода и диода в целом полупроводниковые диоды изготовляются как в дискретном, так и в интегральном исполнении. По своему назначению полупроводниковые диоды подразделяются на выпрямительные (как разновидность выпрямительных – силовые), импульсные, высокочастотные и сверхвысокочастотные, стабилитроны, трехслойные переключающие, туннельные, варикапы, фото- и светодиоды. Условные графические обозначения диодов показаны на рис. 1.10.

diodРис. 1.10 Условные графические обозначения: а – выпрямительные и универсальные;
б – стабилитроны; в – двухсторонний стабилитрон; г – туннельный диод;
д – обращенные диоды; е – варикап; ж – фотодиодов; з – светодиод

В зависимости от исходного полупроводникового материала диоды подразделяются на германиевые и кремниевые. Туннельные диоды изготовляются также на основе арсенида галия GaAs и антимонида индия InSb. Германиевые диоды работают при температурах не выше +80 °С, а кремниевые – до +140 °С.

По конструктивно-технологическому признаку диоды делятся на плоскостные и точечные. Наиболее распространены плоскостные сплавные диоды, применение которых затруднительно лишь на повышенных частотах. Преимуществом точечных диодов является низкое значение емкости p-n-перехода, дающая возможность их работы на высоких сверхвысоких частотах.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (50-100 000 Гц). В настоящее время широко применяются кремниевые выпрямительные диоды с рn-переходом плоскостного типа, имеющие во много раз меньшие обратные токи и большие обратные напряжения по сравнению с германиевыми.

Основным элементом выпрямительного диода является полупроводниковая пластинка, в которой методом сплавления или диффузии сформован рn-переход. Кремниевый рn-переход образуется при сплавлении исходного кристалла кремния n-типа с бором или алюминием. Для защиты от внешних воздействий, а также для обеспечения хорошего теплоотвода полупроводниковая пластинка с рn-переходом и двумя внешними выводами от слоев p и n заключается в корпус

Выпрямительные диоды подразделяются на диоды малой (Iпр. ср < 0,3 А), средней (0,3 А < Iпр. ср < 10 А) и большой (Iпp.ср > 10 А) мощности. Для повышения допустимого обратного напряжения выпускаются высоковольтные столбы, в которых несколько диодов включены последовательно. Кроме того, производством серийно выпускаются выпрямительные блоки, которые содержат как последовательно, так и параллельно (для повышения прямого тока) соединенные диоды.

diod1Рис. 1.11 Конструкция (а) и вольтамперная характеристика (б) точечного диода

Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот (до нескольких сотен мегагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный рn-переход и поэтому называются точечными. Конструкция типичного представителя точечных диодов (Д106А) показана на рис. 1.11, а, а его вольтамперная характеристика – на рис. 1.11, б.

Прямая ветвь вольтамперной характеристики не отличается от соответствующей ветви характеристики плоскостного диода, чего нельзя сказать при сравнении обратных ветвей. Поскольку площадь рn-перехода мала, то обратный ток невелик, однако участок насыщения практически не выражен и за счет токов утечки и термогенерации обратный ток равномерно возрастает. Значения постоянных прямых токов точечных диодов не превышают десятков миллиампер, а значения допустимых обратных напряжений 100 В. Малая величина статической емкости Сд между выводами точечных диодов (малая площадь перехода) позволяет использовать их в широком диапазоне частот. По частотным свойствам точечные диоды подразделяются на две подгруппы: ВЧ (fмакс ? 300 МГц) и СВЧ (fмакс ? 300 МГц). Помимо статической емкости Сд точечные диоды характеризуются теми же параметрами, что и выпрямительные.

Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах. Помимо высокочастотных свойств импульсные диоды должны обладать минимальной длительностью переходных процессов при включении и выключении. Изготовляются точечные и плоскостные диоды. Общая конструкция импульсных диодов, а также их вольтамперные характеристики практически такие же, как у высокочастотных.

Как и выпрямительные, импульсные диоды характеризуются статическими параметрами, а также параметрами предельного режима. Основными же являются импульсные параметры: Сд и tвосст – время восстановления запирающих свойств диода после снятия прямого напряжения.

Стабилитроны – это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Как отмечалось в разд. 1.2, если обратное напряжение превышает значение Uобр. пр, то происходит лавинный пробой рn-перехода,

при котором обратный ток резко возрастает при почти неизменном обратном напряжении. Такой участок характеристики (участок аб, см. рис. 1.8, а) используют стабилитроны, нормальным включением которых в цепь источника постоянного напряжения является обратное (см. рис. 1.8, б). Если обратный ток через стабилитрон не превышает некоторого значения Iст. макс, то состояние электрического пробоя не приводит к порче диода и может воспроизводиться в течение десятков и сотен тысяч часов. В качестве исходного материала при изготовлении стабилитронов используют кремний, поскольку обратные токи кремниевых р-n-переходов невелики, а следовательно, нет условий для саморазогрева полупроводника и теплового пробоя рn-перехода.

К основным параметрам стабилитронов относится напряжение стабилизации
Uст – напряжение на стабилитроне при указанном номинальном токе стабилизации Iст. ном (см. рис. 1.8, а). Помимо Iст. ном указываются также минимальное Iст. мин и максимальное Iст. макс значения токов на участке стабилизации. Уровень напряжения стабилизации определяется величиной пробивного напряжения Uобр. пр, зависящего, в свою очередь, от ширины рn-перехода, а следовательно, степени легирования кремния примесью. Для получения низковольтных стабилитронов используется сильнолегированный кремний. Поэтому у стабилитронов с напряжением стабилизации <5,4 В участок стабилизации определяется обратным током туннельного характера. У низковольтных стабилитронов с ростом температуры напряжение стабилизации уменьшается, а у высоковольтных увеличивается.

Схема на рис. 1.8, б объясняет принцип работы простейшего стабилизатора постоянного напряжения. Увеличение входного напряжения uвх приводит к увеличению тока через стабилитрон и сопротивление R. Избыток входного напряжения выделяется на R, а напряжение uвых остается практически неизменным.

Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью его рn-перехода и изменяется при изменении приложенного к переходу (диоду) напряжения.

Как было сказано выше (см. гл. 1.2), прямосмещенный рn-переход характеризуется, в частности, диффузионной емкостью, а обратносмещенный – барьерной. В варикапах используется барьерная емкость (выражение 1.12), отличающаяся малым температурным коэффициентом, низким уровнем собственных шумов и слабой зависимостью от частоты. Следовательно, в рабочем режиме к

варикапу прикладывается запирающее внешнее напряжение. Поскольку толщина pn-перехода зависит от величины приложенного внешнего напряжения U, то, изменяя последнее, можно регулировать значение ёмкости. Это используется, в частности, для настройки на нужный канал в телевизорах и радиоприёмниках.

Основными параметрами варикапов являются: номинальная емкость Сном, определяемая при номинальном напряжений смещения (Uном = 4 В), максимальная Смакс и минимальная Смин емкости соответственно при максимальном и минимальном напряжениях смещения (или коэффициент перекрытия по емкости Кс = Смаксмин), добротность Q, а также Uобр.макс.

Фотодиод полупроводниковый фотоэлектрический прибор с внутренним фото-эффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под действием энергии светового излучения в области pn-перехода происходит ионизация атомов основного вещества и примеси, в результате чего генерируются пары носителей заряда электрон и дырка. Во внешней цепи, присоединенной к рn-переходу, возникает ток, вызванный движением этих носителей (фототок).

Фотодиоды могут работать в двух режимах: вентильном (фотогенераторном) и фотодиодном (фотопреобразовательном). В отличие от вентильного, фотодиодный режим предполагает наличие внешнего источника питания (смещения).

При контакте двух полупроводников n— и р-типов на их общей границе создается контактная разность потенциалов. При отсутствии светового потока и нагрузки диффузионная составляющая тока рn-перехода, уравновешивается дрейфовой составляющей тока, поэтому общий ток через переход равен нулю.

При освещении полупроводника в области рn-перехода генерируются дополнительные пары носителей заряда. Поле объемного заряда рn-перехода «разделяет» эти пары: дырки дрейфуют в р-область, а электроны – в n-область, т. е. происходит перемещение дополнительно возникших неосновных носителей. В результате плотности дрейфовых составляющих токов, определяемые равенствами (1.8), (1.9), возрастают, а следовательно, дрейфовый ток получает некоторое приращение, называемое фототоком Iф. При этом полный дрейфовый ток представляет собой, в соответствии с выражением (1.10), тепловой ток Io, обусловленный неосновными носителями при отсутствии освещения. Поскольку в области полупроводника p-типа накапливаются избыточные носители с положительным зарядом, а в области полупроводника n-типа – с отрицательным зарядом, то между внешними электродами появляется разность потенциалов представляющая собой фотоЭДС Еф. Эта ЭДС уменьшает высоту потенциального барьера, вызывая тем самым увеличение диффузионной составляющей тока. ФотоЭДС не превышает значения, численно равного ширине запрещенной зоны полупроводника. Такой режим используется, в частности, в солнечных батареях.

Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Основой светодиода является рn-переход, смещаемый внешним источником напряжения в проводящем направлении. При таком смещении электроны из n-области полупроводника инжектируют в р-область, где они являются неосновными носителями, а дырки во встречном направлении. В последующем происходит рекомбинация избыточных неосновных носителей с электрическими зарядами противоположного знака. Рекомбинация электрона и дырки соответствует переходу электрона из энергетического уровня Ее в энергетическое состояние уровня Еу с меньшим запасом энергии.

В германии и кремнии ширина запрещенной зоны сравнительно невелика и поэ-тому выделяемая при рекомбинации энергия передается в основном кристаллической решетке в виде тепла. Рекомбинационные процессы в арсениде галлия (GaAs), фосфиде галлия (GaP), карбиде кремния (SiC), имеющих большую ширину запрещенной зоны (например, для GaAs A? = 1,38 эВ), сопровождаются выделением энергии в виде квантов света, которые частично поглощаются объемом полупроводника, а частично излучаются в окружающее пространство. Поэтому внешний квантовый выход, фиксируемый зрительно, всегда меньше внутреннего.

Основными характеристиками светодиодов являются вольтамперная характеристика, а также зависимости мощности и яркости излучения от величины прямого тока. Мощность и яркость излучения во многом определяются конструкцией светодиода. Чем больший ток можно пропускать через диод при допустимом его нагреве, тем больше мощность и яркость излучения

К основным параметрам светодиода относятся мощность излучения Р, длина волны излучаемого света l и КПД. Длина световой волны, определяющая цвет свечения, зависит от разности энергий, между которыми осуществляется переход электронов.

Светодиоды применяются для индикации и вывода информации в микроэлектронных устройствах. Управляемые светодиоды (с подвижной границей светящегося поля) используются для замены стрелочных приборов как аналоги оптических индикаторов настройки радиоаппаратуры. Светодиоды с несколькими светящимися полями позволяют воспроизводить цифры от 0 до 9. Кроме того, светодиоды применяются как источники излучения в оптронах – приборах бурно развивающейся оптоэлектроники.

Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Характерной особенностью туннельного диода является наличие на прямой ветви вольтамперной характеристики участка с отрицательным дифференциальным сопротивлением.

Для примера на рис. 1.12 показана прямая ветвь вольтамперной характеристики германиевого туннельного усилительного диода 1И104А (Iпр.макс = 1 мА – постоянный прямой ток, Uобр.макс = 20 мВ), предназначенного для усиления в диапазоне волн 2…10 см (это соответствует частоте более 1 ГГц).

Рис. 1.12 ВАХ туннельного диодаРис. 1.12 ВАХ туннельного диода

Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ. Туннельные диоды могут работать на очень высоких частотах более 1 ГГц. Наличие участка с отрицательным дифференциальным сопротивлением на вольтамперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.