Микропроцессорные средства в электроприводах и технологических комплексах

5.9.   Параллельные АЦП

Параллельные АЦП осуществляют квантование сигнала одновременно с помощью набора компараторов, включенных параллельно источнику входного сигнала. На рис. 5.13 показана реализация параллельного метода АЦ-преобразования для 3-разрядного числа. С помощью трех двоичных разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью резистивного делителя.

Если приложенное входное напряжение не выходит за пределы диапазона от 5/2h, до 7/2h, где h = UОП/7 – квант входного напряжения, соответствующий единице младшего разряда АЦП, то компараторы с 1-го по 3-й устанавливаются в состояние 1, а компараторы с 4-го по 7-й – в состояние 0. Преобразование этой группы кодов в трехзначное двоичное число выполняет логическое устройство, называемое приоритетным шифратором, диаграмма состояний которого приведена в табл. 5.1.

Подключение приоритетного шифратора непосредственно к выходу АЦП может привести к ошибочному результату при считывании выходного кода. Рассмотрим, например, переход от трех к четырем, или в двоичном коде от 011 к 100.

Если старший разряд вследствие меньшего времени задержки изменит свое состояние раньше других разрядов, то временно на выходе возникнет число 111, т.е. семь. Величина ошибки в этом случае составит половину измеряемого диапазона.

Так как результаты АЦ-преобразования записываются, как правило, в запоминающее устройство, существует вероятность получить полностью неверную величину. Решить эту проблему можно, например, с помощью устройства выборки-хранения. Некоторые интегральные микросхемы параллельных АЦП снабжаются сверхскоростными УВХ, имеющими время выборки порядка 0,1 нс. Другой путь состоит в использовании кода Грея, характерной особенностью которого является изменение только одной кодовой позиции при переходе от одного кодового значения к другому.

Таблица 5.1 Диаграмма состояний  приоритетного шифратора

Входное

напряжение

Состояние компараторов

Выходы

Uвх/h

К7

К6

К5

К4

К3

К2

К1

Q2

Q1

Q0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

1

2

0

0

0

0

0

1

1

0

1

0

3

0

0

0

0

1

1

1

0

1

1

4

0

0

0

1

1

1

1

0

0

5

0

0

1

1

1

1

1

1

0

1

6

0

1

1

1

1

1

1

1

1

0

7

1

1

1

1

1

1

1

1

1

1

Как видно из табл. 5.1, при увеличении входного сигнала компараторы устанавливаются в состояние 1 по очереди – снизу вверх. Такая очередность не гарантируется при быстром нарастании входного сигнала, так как из-за различия во временах задержки компараторы могут переключаться в другом порядке. Приоритетное кодирование позволяет избежать ошибки, возможной в этом случае, благодаря тому, что единицы в младших разрядах
не принимаются во внимание приоритетным шифратором.

Благодаря одновременной работе компараторов параллельный АЦП является самым быстрым. Например, восьмиразрядный преобразователь типа МАХ104 позволяет получить 1 млрд. отсчетов в секунду при времени задержки прохождения сигнала не более 1,2 нс. Недостатком этой схемы является высокая сложность. Действительно, N-разрядный параллельный АЦП сдержит 2N-1 компараторов и 2N согласованных резисторов. Следствием этого является высокая стоимость и значительная потребляемая мощность.