Трехфазный выпрямитель со средней (нулевой) точкой

Электрическая схема трехфазного выпрямителя с нулевым выводом (рис. 2.1) представляет собой сочетание двух однофазных нулевых схем (см. рис. 1.1). Нагрузка выпрямителя подключена между нулевой (средней) точкой вторичной обмотки трансформатора и катодами диодов VD1 – VD3, образующих катодную группу. Можно образовать анодную группу, присоединив катоды ко вторичной об­мотке.

Для анализа электромагнитных процессов и вывода основных соотношений сна­чала предположим, что нагрузка выпрямителя активная, ключ К замкнут (рис. 2.1, а). В дан­ный момент времени ток проводит диод, положительный потенциал которого на аноде по отношению к средней точке трансформатора выше, чем на остальных диодах.

Так, в момент времени θ = θ1 ток начинает проводить диод VD1, присоединенный к фазе а. Через время, соответствующее углу 2π/3 (θ = θ2), потенциал на аноде диода VD2 (ub) становится выше, чем на аноде VD1. В связи с этим VD1 запирается, а VD2 открыва­ется. Происходит коммутация тока нагрузки (id) с диода VD1 на VD2. В точке 3 (рис. 2.1, в) uc > ub, диод VD2 запирается, VD3 начинает проводить ток и т.д.

Таким об­разом, ес­тественная коммутация тока нагрузки с диода на диод происходит в точках пересече­ния синусоид фазных напряжений. Поэтому точки 1, 2, 3 (см. рис. 2.1, в) называются точками естест­венного зажигания (коммутации) диодов. Выпрямленное напряжение ud пред­ставляет собой огибающую синусоид фазных напряжений (рис. 2.1, г). При активной нагрузке кривая выпрямленного тока id повторяет по форме кривую напряжения ud.

Частота пульсаций  ud, id в три раза больше частоты сетевого напряжения (m = 3), так как каждый диод проводит ток в течение 1/3 периода подводимого напряжения (рис. 2.1, д).

В не­проводящую часть периода к диоду прикладывается обратное напряжение (рис. 2.1, е), которое формируется из фазных напряжений закрытого и проводящих диодов. Напри­мер, когда проводит диод VD2, к диоду VD1 приложено линейное напряжение uab = ua – ub. В момент включения VD3 подается напряжение uac= ua – uc. Соответствующие напряже­ния (см. рис. 2.1, в) заштрихованы.

Форма первичного тока i1, построенная по кривым фазных токов вторичной обмотки, отклоняется от синусоиды (рис. 2.1, ж).

Выведем общие выражения, характеризующие количественные соотношения в трехфазных выпрямителях. За начало отсчета примем момент прохождения напряже­ния фазы а (рис. 2.1 в) максимального значения. Тогда среднее значение выпрямлен­ного напряжения равно:

                      (2.1)

где  

Пределы интегрирования соответствуют времени про­водя­щего состояния диода. Для рассматриваемой схемы (рис. 2.1  а) m = 3; тогда:

Среднее значение выпрямленного тока (нагрузка активная)

,                                                     (2.2)

при m = 3        Id = 1,17 I.

Коэффициент пульсаций для ν-й гармоники равен:

                                                        (2.3)

а частота пульсаций равна:

                                                                        (2.4)

Для выбора диодов необходимо знать максимальное значение обратного напря­жения на диоде (Uобр м):

,                                      (2.5)

при m = 3                   Uобр.м = 2,45 U = 2,09Ud.

Средний ток через диод равен:

Iв ср = Id / m.                                                         (2.6)

Действующее значение напряжения вторичной обмотки трансформатора нахо­дится из выражения (2.1):

,                                                  (2.7)

при m = 3                   U= 0,855Ud.

При учете актив
ных сопротивлений обмоток трансфор­матора (ra) и диодов в прямом направлении (rпр) напряжение U будет равно:

,

где  – условный коэффициент полезного действия (КПД) анодной цепи.

При работе на реальную нагрузку (см. рис. 2.1, а, ключ К разомкнут) изменяются формы токов (становятся прямоугольными) в диоде, нагрузке и в обмотках трансфор­матора (см. рис. 2.1, г, д, ж, штриховые линии). Для расчета элементов схемы необходимо полу­ченные уравнения дополнить соотношениями для токов вторичной и первичной обмоток трансформатора:

                                            (2.8)

Параметры трехфазной нулевой выпрямительной схемы приведены в таблице 1.1.

При прохождении тока через диод и вторичную обмотку трансформатора (см. рис. 2.1, а) создаются вынужденные потоки подмагничивания сердечника трансформатора. Эти потоки составляют 20 – 25 % от основного магнитного потока трансформатора.

Для устранения в сердечнике трансформатора постоянной составляющей потока вынуж­денного намагничивания каждую вторичную обмотку расщепляют на две части и со­единяют способом «зигзаг» (рис. 2.1, б). Кривые первичного тока для этого случая по­казаны на рис. 2.1, з при соединении первичной обмотки в звезду.

В каждом стержне постоянные составляющие намагничивающих сил полуобмо­ток направлены встречно и взаимно компенсируются. Однако это приводит к худшему использованию вторичных обмоток, так как суммарная ЭДС двух полуобмоток, рас­положенных на разных стержнях, меньше в  суммы ЭДС полуобмоток, находя­щихся на одном стержне. В результате ухудшается использование меди вторичных по­луобмоток, увеличиваются расчетная и типовая мощности трансформатора (см. таб­

лица 1.1). Это послужило причиной сравнительно редкого применения трехфазной нуле­вой схемы в цепях управления электрическими машинами средней и большей мощно­сти. Она используется чаще всего в качестве составной части более сложных схем вы­прям­ления, например, в схеме двойного трехфазного выпрямителя с уравнительным реакто­ром (в схеме Кюблера), трехфазной мостовой схеме и т.д.