Электротехника

Падает ли напряжение на резисторе: почему, как и подробная информация

Автор admin

Основные понятияВольтметр

Падение напряжения – это величина, отраженная в изменении потенциала в разных частях проводника. Протекающий от источника по направлению к нагрузке ток меняет свои параметры в силу сопротивления проводов, но его направление остается неизменным. Измерить напряжение можно с помощью вольтметра:

  • двумя приборами в начале и конце линии;
  • поочередное измерение в нескольких местах;
  • вольтметром, подключенным параллельно кабелю.

Простейшая цепь – источник питания, проводник, нагрузка. Примером может быть лампа накаливания, включенная в розетку 220 В. Если замерить прибором напряжение на лампе, оно будет немного ниже. Падение возникло на сопротивлении лампы.

Напряжение или падение напряжения на участке цепи можно вычислять, применяя закон Ома, по формуле U = IR, где:

  • U – электрическое напряжение (вольт);
  • I – сила тока в проводнике (ампер);
  • R – сопротивление цепи или ее элементов (ом).

Зная две любые величины, можно вычислить третью. При этом нужно учитывать род тока – переменный или постоянный. Если в цепи несколько параллельно подключенных сопротивлений, расчет несколько усложняется.

Причины падения напряжения
Перекос фаз в трехфазной цепи

Прежде всего нужно разобраться: это вина поставщика электроэнергии или потребителя. Проблемы с сетью возникают по таким причинам:

  • износ линий электропередач;
  • недостаточная мощность трансформаторов;
  • дисбаланс мощности или перекос фаз.

Эти проблемы связаны с поставщиком, самостоятельно их решить невозможно. Чтобы понять, правильно или нет работают высоковольтные линии, придется вызывать представителей энергосбыта. Они сделают замеры и составят заключение.

Удостовериться, что вина падения не связана с поставщиком, можно самостоятельно. Прежде всего, стоит выяснить у соседей, есть ли у них подобные проблемы. Для измерения напряжения в быту подойдет мультиметр. Его стоимость до 1000 рублей. Если прибор на входе в квартиру показывает нормальное напряжение, причину нужно искать в домашней сети.

Падать напряжение может из-за большой протяженности проводки. Когда длина сети превышает 100 метров, а сечение проводников 16 мм, колебания станут регулярными. Чтобы исправить ситуацию, придется менять проводку.

Слабые контакты – это дополнительное сопротивление току. К приборам он доходит в недостаточном количестве. К тому же неисправные контакты могут вызвать замыкание и привести к пожару. Чтобы нормализовать показатели, нужно заменить аварийный участок цепи и подгоревшие контакты.

Виновником может быть неправильное соединение проводов, идущих от ЛЭП к дому. Иногда вопреки требованиям безопасности соединяют медные провода с алюминиевыми или медные проводники соединены вместо клемм скруткой. Клеммы и зажимы изготовлены из некачественных материалов, либо срок их годности вышел.

Возможно, неисправность заключается в самом вводном аппарате. В этом случае его следует заменить.

Падение напряжения в параллельной цепи

Пример: источник питания 24 В и три резистора подключены параллельно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом, как и в предыдущей схеме. Чему будет равно падение напряжения на каждом резисторе?

Как рассчитать падение напряжения на резисторах?
Схема для решения задачи на параллельно подключенное сопротивление

В этом случае все проще: независимо от значения сопротивления падение напряжения на каждом резисторе одинаково. Это означает, что падение напряжения на каждом из них — это просто общее напряжение цепи, деленное на количество резисторов в цепи, или 24 В / 3 = 8 В.

Применяя эти несложные правила вы сможете рассчитать падение напряжения даже в сложной цепи, достаточно лишь разделить её на простые участки.

Падение напряжения в последовательной цепи

Если вы хотите найти падение напряжения на отдельных резисторах в цепи, выполните следующие действия:

  1. Рассчитайте общее сопротивление, сложив отдельные значения R.
  2. Рассчитайте ток в цепи, который одинаков для каждого резистора, поскольку в цепи только один проводник.
  3. Рассчитайте падение напряжения на каждом резисторе, используя закон Ома.

Пример: источник питания 24 В и три резистора подключены последовательно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом. Чему равно падение напряжения на каждом резисторе?

Как рассчитать падение напряжения на резисторах?
Схема для решения задачи на последовательно подключенное сопротивление

  • Сначала рассчитаем общее сопротивление: 4 + 2 + 6 = 12 Ом.
  • Далее рассчитываем ток: 24 В / 12 Ом = 2 А
  • Теперь используем ток, чтобы вычислить падение напряжения на каждом резисторе. Используя Закон Ома (U = IR) для каждого резистора, получим значения R1, R2 и R3 равными 8 В, 4 В и 12 В соответственно.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.


Падение напряжения на резисторе

Таблица с частыми значениями

Существуют таблицы для определения потери напряжения (процентов при передаче одного киловатта на один километр) в зависимости от материала жилы, сечения и коэффициента реактивной мощности.

Ниже приведен пример таблицы для магистрального алюминиевого провода в трёхфазной линии передач.

Сечение, мм2 1,02 0,88 0,75 0,62 0,53 0,48 0,36 0,28
16 1,62 1,58 1,55 1,52 1,50 1,49 1,46 1,44
25 1,13 1,10 1,07 1,03 1,02 1,00 0,97 0,96
35 0,87 0,84 0,81 0,78 0,76 0,75 0,72 0,70

По таблице видно, что по мере падения коэффициента реактивной мощности происходит снижение потери. Дополнительно снижает потерю увеличение сечения проводника.

Другой вариант таблицы для однофазной и трёхфазной сетей для электродвигателей и освещения.

Сечение, мм2 Сечение, мм2 Питание 1 фаза в установившемся режиме Питание 1 фаза в момент пуска Освещение 1 фаза Питание 3 фазы в установившемся режиме Питание 3 фазы в момент пуска Освещение 3 фазы
Медь Алюминий Косинус 0,8 Косинус 0,35 Косинус 1,0 Косинус 0,8 Косинус 0,35 Косинус 1,0
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Например, трёхфазный двигатель работает при токе 100 А и напряжении 400 В, но в момент пуска потребляет до 500 А. При различных условиях работы косинус φ будет составлять 0,8 или 0,35. Для питания двигателя проложен провод длиной 50 метров с сечением 35 квадратов. При нормальных условиях на трёхфазной сети потери составляют один вольт на километр проводки (из таблицы).

В нашем случае потеря составит 1в*0,05км*100а=5 вольт. В момент пуска на щите наблюдается просадка напряжения в пределах 10 в. Таким образом суммарное падение достигнет 15 вольт, что составляет 3,75%. Значение лежит в пределах допуска ПУЭ и такая цепь применима к эксплуатации.

Результат понижения напряжения


Распространено явление, когда входное напряжение определяется ниже установленной нормы. Проседание по длине кабеля возникает по причине прохождения высокого тока, который вызывает увеличение сопротивления. Также потери возрастают на линиях большой протяженности, что характерно для сельской местности.

Согласно нормативам, потери от трансформатора до самого удаленного участка должны составлять не более 9%. Результат отклонения параметров от нормы может быть следующим:

  • сбой работы энергозависимых установок и оборудования, осветительных приборов;
  • выход электроприборов из строя при низких показателях напряжения на входе;
  • снижение вращающего момента при пуске электродвигателя или компрессорной установки;
  • пусковой ток приводит к перегреву и отключению двигателя;
  • неравномерная токовая нагрузка в начале линии и на удаленном конце;
  • осветительные приборы работают вполнакала;
  • потери электроэнергии, недоиспользование мощности тока.

Изменяются характеристики и параметры эксплуатации электрических приборов. Например, из-за слабой мощности увеличивается время нагрева воды бойлером. Снижение напряжения приводит к сбоям в электронике.

В рабочем режиме потери напряжения в кабеле могут быть до 5%. Это значение допустимо для сетей энергетической отрасли, так как токи большой мощности доставляются на дальние расстояния. К таким линиям предъявляются повышенные требования. Поэтому при потерях в быту следует уделить внимание вторичным сетям распределения энергии.

Как рассчитать

Оценки и точные расчёты величины падения напряжения основаны на фундаментальном физическом законе Ома, названным в честь немецкого исследователя Георга Ома, открывшего этот закон в 1826 г.

На основании серии многочисленных экспериментов, измеряя зависимость величины тока через различные проводники от прикладываемого напряжения, исследователь получил следующую математическую формулу:

I=U/R, где:

  • I — ток в цепи (измеряется в амперах, А);
  • U — падение напряжения (измеряется в вольтах, В);
  • R — сопротивление, единицей измерения которого является Ом, названная также в честь немецкого первооткрывателя.

Таким образом, значение силы тока I в электрической цепи находится в прямой пропорциональной зависимости от величины U и в обратной пропорциональной зависимости от величины сопротивления R. Формула является базовой для расчёта падения напряжения, при этом в зависимости от имеющихся справочных или измерительных данных могут быть два варианта вычислений.

Через силу тока и сопротивление

Воспользовавшись формулой выше, можно получить следующее выражение:

U=I*R

То есть, зная величину протекающего тока, которая может быть измерена прибором (амперметром), и величину сопротивления, получаем искомое значение U с помощью умножения величины тока I на значение сопротивления R. Если значение R заранее неизвестно, то основная формула, применяемая для вычисления R, выглядит следующим образом:

R=ρ*(L/S), где:

  • L — длина проводника, м;
  • S — площадь поперечного сечения, м2;
  • ρ — удельное сопротивление.

Длина и площадь легко измеряются доступными средствами. Величины удельных сопротивлений всех электротехнических материалов давно измерены, сведены в таблицы и находятся в открытом доступе. Величина ρ равна сопротивлению проводника длиной 1 м, имеющего площадь поперечного сечения 1 м2.

Через мощность и силу тока

Второй вариант вычисления основан на формуле, связывающей мощность P электрической энергии, выделяемой на нагрузке, с током I и падением напряжения U:

P=U*I

Формула является следствием закона Джоуля-Ленца, открытого почти одновременно двумя физиками (английским и русским) в 1841 г.

Было замечено, что протекание тока через нагрузку всегда сопровождается выделением тепла Q. Исследователям удалось установить функциональную связь между количеством выделяемого тепла Q и другими измеряемыми (или вычисляемыми) величинами, выраженную формулой:

Q=I2*R*t, где:

  • I — ток, А;
  • R — сопротивление, Ом;
  • t — время измерения, с;
  • Q — количество тепла, Дж.

Мощность P, по определению — это энергия, в данном случае Q, выделяемая в единицу времени. То есть, поделив обе части уравнения на время t, получим выражение для мощности P:

P=I2*R

Воспользовавшись формулой, получаем выражение для P:

P=I*U

Следовательно, зная ток, протекающий через нагрузку и потребляемую ей мощность, можем рассчитать падение напряжения:

U=P/I

Формула верна для случая цепей постоянного тока. Для расчётов цепей переменного напряжения и тока справедлива следующая формула:

U=(P/I)*cosφ

В данном случае буквой φ обозначается коэффициент мощности, значение которого определяется свойствами нагрузки. Для электроприборов, имеющих исключительно активную нагрузку (нагревательные элементы, лампы накаливания), коэффициент cos φ практически равен единице. Для учёта возможной реактивной составляющей при работе таких устройств хорошим приближением считается значение cos φ равное 0,95. Для электрооборудования с существенным присутствием реактивной компоненты (трансформаторы, электродвигатели, конденсаторы) cos φ принимается равным 0,8.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

К чему приводит потеря напряжения

В силу различных причин, входное напряжение, подающееся для энергоёмких потребителей (здания, промышленные объекты), может быть ниже установленных нормативов. Например, падение по длине кабеля обусловлено протеканием больших токов, вызывающих рост сопротивления. Потери возрастают на протяжённых линиях электропередач. При отклонении входных напряжений ниже установленных нормативов возможны следующие негативные последствия:

  • Возможны сбои в работе промышленных установок и осветительного оборудования.
  • При низких значениях входного напряжения возникает большая вероятность выхода из строя электроприборов.
  • Падает вращающий момент, необходимый для запуска компрессорной техники и электродвигателей.
  • Возникает нежелательный дисбаланс в токовой нагрузке в начале линии и на её конце.
  • Осветительное оборудование начинает функционировать «вполнакала», что не допускается нормами СанПиНа и требованиями техники безопасности.
  • Деформируются выходные характеристики и режимы эксплуатации электрических приборов. Типичным примером является возрастание времени, требуемого для нагрева воды бойлером.
  • Резко повышается вероятность спонтанных сбоев в работе электроники.

От чего зависит

Потери электроэнергии, связанные с её транспортировкой по проводам, неизбежны в силу вышеизложенных физических причин. Основная причина связана с падением напряжения на сопротивлении проводов. Из закона Ома следует, что чем выше сопротивление провода, тем больше на нём падение напряжения (потери). Для низковольтных сетей с параметрами 220-380 В потери минимизируются с помощью выбора кабеля, имеющего оптимальную площадь сечения.

R=ρ*(L/S)

Из формулы следует, что сопротивление падает при увеличении площади сечения и, наоборот, растёт при увеличении длины провода. Очевидно также, что чем меньше удельное сопротивление металла, из которого изготовлен провод, тем меньше R. Всегда предпочтительнее выбор провода с медной жилой по сравнению с алюминиевой, т.к. ρмеди = 0,0175 Ом*мм2/м, в то время как ρалюминия = 0,028 Ом*мм2/м. Следует учитывать, что вариант использования медного провода дороже алюминиевого. Подводя итог этого раздела, можно сказать, что для уменьшения потерь электроэнергии следует:

  • Оптимизировать длину прокладываемых проводов — убрать «всё лишнее».
  • По возможности использовать провода с медной жилой.
  • Рассчитать оптимальное сечение используемого провода при максимально допустимой нагрузке.

Как уменьшить падение напряжения и снизить потери в кабеле

Можно снизить количество потерь, уменьшив сопротивление на всем участке электросети. Экономию дает способ повторного заземления нуля на каждой опоре линии электропередач.

Стоимость электроснабжения линией большой протяженности, выбранной по допустимому падению напряжения, больше выбора, выполненного по нагреву кабеля. Все же есть возможность снизить эти расходы.

  • Усилить начальный потенциал питающего кабеля, подключив его к отдельному трансформатору.
  • Добиться постоянных величин напряжения в сети можно с помощью установки стабилизатора возле нагрузки.
  • Подключение потребителей с низкими нагрузками 12–36 В выполняют через трансформатор или блок питания.

Чем длиннее кабель линии электропередач, тем большее сопротивление возникает при прохождении по нему тока. Очевидно, что потери напряжения также выше. Снизить их можно, комбинируя способы между собой.

  • Снизить расходы увеличением сечения питающего кабеля. Но этот метод потребует больших финансовых вложений.
  • При разработке линий энергоснабжения следует выбирать максимально короткий путь, так как прямая линия всегда короче ломаной.
  • При снижении температуры сопротивление металлов уменьшается. Вентилируемые кабельные лотки и другие конструкции снижают потери в линии.
  • Уменьшение нагрузки возможно, если есть много источников питания и потребителей.

Экономию дает должное содержание и профилактика электросетей – проверка плотности и прочности контактов, использование надежных клеммников.

Подходить к вопросу сохранения энергии нужно с полной ответственностью. Проблема потери напряжения может вывести из строя дорогостоящие приборы, инструменты. Не стоит пренебрегать мерами безопасности, они будут нивелировать скачки напряжения и защищать бытовую технику и оборудование на предприятии.

Подведем итоги

В общем падение напряжения – одна из самых важных проблем в электротехнике, и ее следует хорошо понимать. Итак, давайте подытожим полученные знания в нескольких моментах:

  • Напряжение определяет количество энергии каждого электрона – чем выше напряжение, тем больше энергии будет обеспечивать каждый электрон. Но будьте осторожны, потому что хотя энергии может быть слишком мало, она также может быть слишком большой. Слишком высокое напряжение – основная сила, разрушающая хрупкую электронику.
  • Напряжение падает только тогда, когда течет электричество – падение напряжения отражает потребляемую энергию, и энергия может быть использована только тогда, когда ее физически доставляют электроны. Следовательно, падение напряжения происходит только тогда, когда цепь замкнута и течет ток.
  • Энергия распределяется между всеми приемниками тока – один резистор берет на себя все – два и более должны уже делиться. Их сопротивление определяет, сколько энергии они получают. Большее сопротивление означает большее падение напряжения, меньшее сопротивление означает меньшее потребление энергии.
  • Провода также вызывают падение напряжения – все кабели имеют определенное сопротивление, поэтому их правильный выбор так важен для электриков. Дело в том, что падение напряжения на кабелях должно быть как можно меньше, чтобы энергия могла доходить до потребителей без больших потерь.

Иногда люди не совсем понимают, что отвечает за движение электронов к батарее, так как напряжение между ней и нитью накала равно 0. Поскольку у электронов остаточная сила, это также означает, что у них осталась некоторая кинетическая энергия. Электроны, которые прижимаются к передним в цепной реакции, также должны иметь некоторую оставшуюся энергию. Значит ли это, что напряжение, которое потребляют нити, не будет равно напряжению аккумулятора?

Дело в том, что утверждения «Между лампочкой и аккумулятором напряжение 0 В» и «После выхода из лампочки у них еще есть энергия» немного спорны. Если есть энергия, почему напряжение 0 В? Объясняем: лампочка забирает энергию у электронов, потому что у нее есть сопротивление, но и провода от батареи к лампочке тоже. Анализируя всю схему выясняется, что лампочка забирает 99,8% энергии, провод с одной стороны – 0,1% энергии, а провод с другой стороны – тоже 0,1% энергии.

Теперь: электроны выходят из батареи. Дойдя до лампочки, они уже потеряли 0,1% из-за проводников. В лампочке они теряют еще 99,8% энергии, а оставив ее, у них остаются последние 0,1% энергии, чтобы покрыть другую половину цепи и достичь батареи. И хотя измеритель показывает что там уже 0 В, если бы он был очень точным, это означало бы, что на самом деле существует какое-то напряжение в 0,0001 В. Это остаточная энергия, которая осталась чтобы пересечь последний участок провода и достичь батареи.

Итак, подведем итог – лампочка никогда не будет потреблять ровно столько напряжения, сколько обеспечивает батарея, потому что это напряжение также съедается проводами. В действительности сопротивление проводов по сравнению с лампочкой настолько низкое, что для простоты предполагаем, что оно равно 0 В. Если лампочка не находится в нескольких километрах от батареи, когда сопротивление лампы провода будут играть важную роль.

Уверены, что теперь тема падения напряжения перестанет быть для вас малопонятной, а если что осталось неясным – вопросы как обычно на форум.

Источники

  • https://StrojDvor.ru/elektrosnabzhenie/chto-nazyvaetsya-padeniem-napryazheniya-na-uchastke-cepi/
  • https://milliamper.ru/kak-rasschitat-padenie-napryazheniya-na-rezistorah/
  • https://math-nttt.ru/teoriya/raschet-padeniya-napryazheniya-na-rezistore.html
  • https://razvodka.net/wiring/napryazhenie-formula-7232/
  • https://380online.ru/elektro-dom/kak-rasschitat-padenie-napryazheniya.html
  • https://principraboty.ru/padenie-napryazheniya-raschet-formula-dopustimye-normy-posledstviya/
  • https://radioskot.ru/publ/spravochnik/padenie-napryazheniya

[свернуть]
Adblock
detector