Электротехника

Дроссель это: что такое в электронике, принцип работы, устройство

Автор admin

Что такое дроссель?

Деталь используется при составлении электроцепи для предотвращения нагрева и перегрузки. Катушка индуктивности задерживает влияние тока, при этом резкие перепады исключаются из-за закона самоиндукции. Так создается дополнительное напряжение.

Дроссель состоит всего из 4 элементов:

  • проволоки, которая закрепляется в изоляции;
  • сердечника, материал для него подбирают отталкиваясь от применения устройства;
  • заливочной массы, в которую входят вещества, не поддающиеся горению, так обеспечивается дополнительная изоляция;
  • корпуса, его делают из термоустойчивого материала.

Электронный дроссель похож на железный трансформатор, отличается он  обмоткой. Сердечник состоит из стали, а пластины располагаются так, чтобы они не соприкасались друг с другом. Индуктивность достигает 1Гн, катушка ограничивает резкие скачки тока в цепи. Если уровень снижается, то деталь поддерживает его на минимальных показателях, а при сильном повышении дроссель в устройстве ограничивает скачок. Элемент также используется для сглаживания, отделения определенных участков схемы, накапливания энергии и устранения помех.

Разбираясь в том, что такое дроссель, стоит уточнить, что его в основном ставят для сбора энергии и задержки тока в выбранном диапазоне. Некоторые виды люминесцентных ламп неспособны работать без такой детали. Это относится к уличным фонарям и домашним светильникам. Дроссель в контакте с ними выступает ограничителем, который передает электроды на лампу.

Созданные по этому принципу механизмы формируют напряжение, оно нужно для получения разряда. После этого загорается лампа. Процесс протекает настолько быстро, что напряжение создается всего через несколько долей секунды, без детали невозможна стабильная работа и включение предмета.

Устройство

Дроссель-трансформатор имеет вид проводника, который наматывается по спирали. В зависимости от сферы использования его делают одно- или многожильным. Иногда в устройство добавляют диэлектрический каркас или оставляют деталь без него. В некоторых элементах дополнительно используется основание с круглым, квадратным или прямоугольным сечением.

Деталь состоит из множества витков, во время создания используется прогрессивная или универсальная намотка. При использовании первого вида они плавно меняются по всей длине, второго — расстояние между витками остается одинаковым.

Прогрессивная намотка используется в электрике, когда требуется сконструировать высокочастотное устройство. Для достижения результата приходится уменьшать паразитную емкость. Намотку выполняют в один или несколько слоев, из материалов подходит только медь, поскольку она выступает проводником.

Чтобы повысить индуктивность, используют ферромагнитный сердечник. В зависимости от места применения используют разные виды материала, поскольку некоторые из них подходят для подавления сильных помех, а другие берут при фильтрации звука. Когда требуется дросселирование механизмов на сверхвысоких частотах, то используют в основном латунь.

Во время производства производитель учитывает требуемую индуктивность, способности к выдерживанию тока и особенности индукции, поскольку иначе произойдет насыщение. Сначала определяется размер зазора, количество витков и сила тока, а потом высчитывается диаметр проволоки. В мелких машинах или электронных устройствах дроссель делают плоским, тогда проводник располагают в виде круга или зигзага.

Разновидности дросселей

По виду электрических цепей, в которых устанавливаются дроссельные элементы, классификация следующая:

  • низкочастотные индуктивности;
  • высокочастотные катушки;
  • дроссели в цепях постоянного тока.

Низкочастотные элементы внешне напоминают обычный трансформатор, у которого имеется всего лишь одна обмотка. Их катушка навита на пластиковом каркасе с размещенным внутри сердечником, изготовленным из трансформаторной стали.

Стальные пластины надежно изолированы одна от другой, что позволяет снизить уровень вихревых токов.


Катушка индуктивности для НЧ динамика, сабвуфера, низких частот, провод ПЭТВ 1,25мм

Дроссельные НЧ катушки обычно имеют большую индуктивность (более 1 Гн) и препятствуют прохождению токов сетевых частот 50-60 Герц через участки цепей, где они установлены.

Еще одна разновидность индуктивных изделий – высокочастотные дроссели, витки которых навиваются на ферритовом или стальном сердечнике. Существуют разновидности ВЧ изделий, которые работают без ферромагнитных оснований, а провода в них наматываются просто на пластмассовый каркас. При секционной намотке, применяемой в схемах среднечастотного диапазона, витки провода распределяются по отдельным секциям катушки.

Электротехнические изделия с ферромагнитным сердечником имеют меньшие габариты, чем простые дроссели той же индуктивности. Для работы на высоких частотах применяются сердечники ферритовые или из диэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели используются в довольно широком диапазоне частот.

Некоторые из них изготавливаются в виде толстой витой проволоки, совсем не имеющей каркаса.

Дроссель постоянного тока в основном применяется для сглаживания пульсаций, появляющихся после его выпрямления в специальных схемах.

Принцип работы
Дроссель электрический

Принцип работы дросселей в электрической схеме можно объяснить так:

  • при протекании переменного тока через индуктивный элемент скорость его нарастания замедляется, что приводит к аккумулированию энергии в магнитном поле катушки;
  • объясняется это действием закона Ленца, согласно которому ток в индуктивности не может изменяться мгновенно;
  • нарушение этого правила привело бы к недопустимому нарастанию напряжения, что физически невозможно.

Другой отличительной особенностью, поясняющей принцип работы индуктивности, является эффект самоиндукции, теоретически обоснованный Фарадеем. На практике он проявляется как наведение в катушке собственной ЭДС, имеющей противоположную полярность. За счет этого эффекта через индуктивность начинает течь ток, препятствующий нарастанию вызвавшего его полевого образования.

Указанное свойство позволяет применять индуктивные элементы в электротехнике для сглаживания низкочастотных пульсаций. Для них индуктивность представляется большим сопротивлением.

Использование в других технических областях (в высокочастотных устройствах, например) дроссель обеспечивает развязку основной электронной схемы от вспомогательных (низкочастотных) цепей.

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.


Схема магнитного пускателя

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Схема подключения

Дроссели часто встречаются в блоках питания и светильниках с люминесцентными лампами. Подключение в схему дросселя для таких вариантов будет представлено ниже в статье.

Люминесцентный светильник

В такой схеме дроссель выступает в качестве пускового и сглаживающего устройства. Подключается он последовательно с лампой. При этом совместно с ним так же используется стартер. При таком подключении дроссель использует такой принцип работы:

  1. По цепи протекает переменный ток.
  2. Люминесцентная лампа в холодном состоянии не включается по причине своего высокого сопротивления. Протекающий ток не запускает лампу, а нагревает ее катоды, а затем перетекает к стартеру.
  3. Внутри стартера происходит нагрев подвижного контакта. После нагрева контакт замыкает цепь.

За момент нагрева катодов и стартера, происходит накопление тока в контуре дросселя. При замыкании стартера происходит вымещение тока дросселем и разрядка самого стартера. При разрядке приходят в движение электроны на катодах лампы. Они вступают в контакт с газом, и при этом лампа загорается. Схема люминесцентной лампы, состоящую из дросселя, двух стартеров и двух люминесцентных ламп представлена ниже.

Блок питания

У начинающих радиолюбителей часто возникает такой вопрос — зачем нужен дроссель в блоке питания. Он необходим по двум причинам:

  1. Для сглаживания переменной составляющей тока.
  2. Для сглаживания пульсаций.

Как правило, дроссели в этих блоках устанавливают после диодного моста непосредственно на выходе, а значит работают уже с постоянным током. При увеличении напряжения или коротком замыкании, дроссель сглаживает значительную часть пульсации. При стабильной работе блока питания, устройство сглаживает высокочастотные помехи, пропуская в цепь только прямой ток без каких-либо колебаний. Такая заслонка также выполняет роль дополнительного сопротивления, которое значительно снижает напряжение на выходе моста. Дроссель и такая схема подключения представлены на рисунке ниже.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний, чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Индуктивность

Для замера индуктивности понадобится тестер с режимом измерения этого параметра. Обозначаются такие возможности мультиметра с помощью букв «Н» или «Гн». Замер этого параметра проводится следующим образом:

  1. Нужно установить мультиметр в режим измерения индуктивности.
  2. Далее надо будет убедиться, что проверяемое устройство отключено от электричества.
  3. Измерительные щупы подсоединить к контактам элемента.

Прибор должен показать значение индуктивности, близкие к указанным на корпусе устройства.

Сопротивление

Замер сопротивления поможет узнать состояние катушки. Проверка в этом случае выглядит следующим образом:

  1. Дроссель необходимо отключить от цепи.
  2. Перевести тестер в режим замера сопротивления.
  3. Соединить измерительные щупы с контактами устройства.

Бесконечно большое сопротивление укажет на обрыв внутренней обмотки. Если сопротивления нет совсем – это указывает на короткое замыкание. Значение сопротивления должно быть близко к характеристикам, которые указаны на корпусе устройства.

Убедиться в отсутствии короткого замыкания можно при переключении тестера в режим «прозвонка». Звуковой сигнал тестера укажет на наличие короткого замыкания.

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Как отличить резистор от дросселя

По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».

Более точный способ – сопротивление. У дросселя оно почти нулевое.

Можно ли обойтись без него

Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.

Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:

  1. Имеет небольшие массогабариты.
  2. Не гудит.
  3. Не вызывает мерцания лампы с частотой сети.
  4. Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
  5. Запускает ЛДС практически мгновенно.

Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.

Типовые неисправности — замыкание, перегрев, обрыв

А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:

  1. Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
  2. Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
  3. Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.

Самостоятельное изготовление

Для самостоятельного изготовления дросселя необходимо правильно рассчитать его конструкцию. Для этого используется простая формула расчёта индуктивности: L=0,01*d*w 2 /(L/d+0,44), где d — диаметр основания (см), L — длина проволоки (см), w — количество витков. При этом если имеется мультиметр с возможностью изменения индуктивности, то точное количество витков можно подобрать, используя его.

Метод намотки при использовании этой формулы предполагает укладку виток к витку. Например, необходимо подобрать магнитопровод для дросселя с индуктивностью один мкГн, рассчитанный на ток I = 4A. Берется сердечник 2000 НМ типоразмера К 16 х 8 х 6. Согласно справочнику коэффициент начальной индуктивности — ALH = 1,36 мкГн, а длина магнитного пути — le= 34,84 мм. Соответственно, число витков будет N= (L/ALH)0,5= (1/1,36)0,5 = 0,86. Если принять N=1, то при заданном токе напряжённость магнитного поля в сердечнике будет равна Н= 4*1/(34,84*10−3)= 114 А/м.

Таким образом, дроссель представляет собой катушку, которая характеризуется индуктивностью. Благодаря своим свойствам он может накапливать магнитную мощность, после отдавая её в цепь в виде электрической энергии. При этом использование элемента позволяет также подавлять переменную составляющую тока в цепи.

Полезные советы

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.

Цветовая маркировка
Цветовая маркировка

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Источники

  • https://proagregat.com/energetika/shema-podklyucheniya-drosselya-i-ego-oboznachenie/
  • https://StrojDvor.ru/elektrosnabzhenie/princip-raboty-i-oboznachenie-elektricheskix-drosselej-na-sxemax/
  • https://elektroznatok.ru/info/teoriya/drossel
  • https://miminonino.ru/oborudovanie/chto-takoe-drossel.html
  • https://ProFazu.ru/knowledge/electrical/drossel-eto.html
  • https://onlineelektrik.ru/eoborudovanie/transformatori/drossel-eto-pribor-umenshayushhij-napryazhenie.html
  • https://amperof.ru/elektropribory/chto-takoe-drossel.html
  • https://principraboty.ru/princip-raboty-drosselya/
  • https://LampaExpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/drossel-dla-lamp

[свернуть]