При проектировании ЦФ в некоторых случаях следует учитывать специфические погрешности их работы, возникающие за счет квантования сигналов, т. е. вследствие представления всех величин, как постоянных, так и изменяющихся во времени, в виде двоичных чисел с конечной разрядностью. Квантованный характер сигналов приводит к целому ряду явлений, описанных в литературе по цифровой фильтрации. Рассмотрим простейший эффект – возникновение так называемого шума квантования.
Пусть – наибольшее значение аналогового сигнала на входе АЦП, которое еще не вызывает переполнения арифметических устройств фильтра. Если m – число двоичных разрядов, отводимых для представления чисел в фильтре, то очевидно, что квантование сигнала происходит с шагом:
. (3.57)
Квантованные отсчеты описывают мгновенные значения аналогового сигнала не точно, а с некоторой погрешностью, тем меньшей, чем меньше шаг квантования. Иными словами, отсчеты входного сигнала () фильтра являются суммами истинных значений () и отсчетов () некоторого дискретного случайного процесса, называемого шумом квантования:
. (3.58)
Теоретически и экспериментально показано, что в большинстве случаев, интересных для практики, последовательность образована статистически независимыми случайными величинами, каждая из которых равномерно распределена на интервале от до и поэтому имеет нулевое математическое ожидание и дисперсию, равную:
.
Шум квантования, присутствующий на входе ЦФ, преобразуется этим фильтром. Пусть — дискретная последовательность, соответствующая входному шуму квантования, Для того чтобы найти l-й отсчет выходной последовательности , следует вычислить дискретную свертку входного шумового сигнала и импульсной характеристики фильтра:
. (3.59)
Отсюда определяем функцию корреляции шума квантования на выходе:
. (3.60)
В формуле (3.60) проводилось суммирование по индексу i. Положив m = 0, получим дисперсию шума на выходе цифрового фильтра:
. (3.61)
Таким образом, выходной шум квантования оказывается тем больше, чем медленнее уменьшаются отсчеты импульсной характеристики фильтра.