Закон Ома для электрической цепи.
Согласно этому закону сила тока I в электрической цепи равна э. д. с. Е источника, поделенной на сопротивление цепи Rц, т. е.
I = E / Rц (7)
Полное сопротивление замкнутой электрической цепи (рис. 13) можно представить в виде суммы сопротивления внешней цепи R (например, какого-либо приемника электрической энергии) и внутреннего сопротивления Ro источника. Поэтому сила тока
I = E / (R+Ro) (8)
Чем больше э. д. с. Е источника и чем меньше сопротивление электрической цепи, тем больший ток проходит по этой цепи.
Из формулы (7) следует, что э. д. с. источника электрической энергии равна произведению силы тока на полное сопротивление электрической цепи:
E = IRц (7)
Закон Ома для участка электрической цепи.
Закон Ома может быть применен не только ко всей цепи, но и к любому ее участку, например между точками а и б (см. рис. 13).
Рис. 13. Схема простейшей электрической цепи и Рис 14. Прохождение электрического тока по проводникам аналогично прохождению воды по трубам
В этом случае э. д. с. Е источника в формуле (7) должна быть заменена разностью потенциалов между началом и концом рассматриваемого участка, т. е. напряжением U, а вместо сопротивления всей цепи в формулу должно быть подставлено сопротивление R данного участка. В этом случае закон Ома формулируется следующим образом. Сила тока I на данном участке электрической цепи равна напряжению U, приложенному к участку, поделенному на сопротивление R этого участка:
I = U / R (9)
Прохождение электрического тока по проводникам полностью аналогично прохождению воды по трубам (рис. 14).
Чем больше разность уровней воды при входе и выходе из трубы (напор) и чем больше поперечное сечение трубы, тем больше воды протекает сквозь трубу в единицу времени. Точно так же, чем больше разность электрических потенциалов (напряжение) на зажимах источника или приемника электрической энергии и чем меньше его сопротивление (т. е. чем больше площадь поперечного сечения проводника), тем больший ток проходит по нему.
Из формулы (9) следует, что напряжение U, действующее на некотором участке цепи, равно произведению силы тока I на сопротивление R этого участка:
U = IR (10)
Так как потенциал электрического поля в начале участка электрической цепи больше, чем в конце, разность потенциалов, или напряжение U, приложенное к участку электрической цепи, часто называют падением напряжения на данном участке.
Сопротивление R участка цепи равно напряжению, приложенному к данному участку, поделенному на силу тока на этом участке, т. е.
R = U / I (11)
Если сопротивление R не зависит от проходящего по нему тока и приложенного к нему напряжения, то его вольт-амперная характеристика, т. е. зависимость силы тока I от напряжения U, представляет собой прямую линию 1 (рис. 15).
Рис. 15. Вольт-амперные характеристики линейных и нелинейных сопротивлений
Такие сопротивления называют линейными, а электрические цепи, в которых включены подобные сопротивления,— линейными цепями.
Однако в электротехнике широко применяют и такие устройства, сопротивление которых резко изменяется в зависимости от силы или направления проходящего через них тока либо приложенного напряжения. Подобные сопротивления имеют вольт-амперную характеристику, отличающуюся от прямой (кривая 2 на рис. 15), и называются поэтому нелинейными сопротивлениями.
Простейшим нелинейным сопротивлением является электрическая лампа накаливания. При протекании тока по металлической нити лампа нагревается и сопротивление ее возрастает. Следовательно, при увеличении приложенного к лампе напряжения сила тока будет возрастать не прямо пропорционально напряжению, а в несколько меньшей степени.
В принципе большинство электрических устройств может быть представлено в виде нелинейного сопротивления, так как при изменении силы тока меняется температура данного устройства, а следовательно, и его сопротивление. Однако у многих из них вольт-амперные характеристики в рабочем диапазоне изменений напряжения и тока мало отличаются от прямой, поэтому приближенно можно их считать линейными сопротивлениями.
К сопротивлениям с нелинейной вольт-амперной характеристикой относятся электрические лампы накаливания, термисторы (полупроводниковые резисторы, сопротивление которых сильно изменяется при изменении температуры), полупроводниковые диоды, тиристоры и транзисторы, электронные лампы и пр. Нелинейные сопротивления широко используют в электротехнике для автоматического регулирования силы тока и напряжения в электрических цепях, электрических измерений, выпрямления тока и пр.