2.4. Нагрузки в цепях переменного тока

Активное сопротивление ( r) – нагрузка, аналогичная той, которая использовалась в цепях постоянного тока.

Реактивные сопротивления (X) – нагрузки, которые не использовались в цепях постоянного тока. Они используются только в цепях переменного тока и не потребляют активную мощность.

Индуктивность

Индуктивность (первый вариант определения) – это свойство физического объекта (катушки) запасать в себе энергию магнитного поля и отдавать её при следующих условиях: если ток и напряжение катушки одного знака, энергия запасается, если же разного знака, то энергия катушкой отдается.

Индуктивность (второй вариант определения) – это коэффициент пропорциональности между потокосцеплением и током, вызвавшем это потокосцепление.

Индуктивность на схемах обозначается буквой L и измеряется в генри (Гн).

Пусть дана катушка (рис. 2.5). Если контур интегрирования (k) направить по силовой линии так, чтобы он охватывал все витки катушки, то закон полного тока при Н = const, можно записать: H k = w i

Магнитная индукция связана с напряженностью: В = m m0Н, где m – относительная величина, показывающая, во сколько раз проницаемость данной среды больше магнитной проницаемости вакуума; m0 – магнитная проницаемость вакуума.

Потокосцепление (y) определяется потоком: , где .

Если Н = const, то, и индуктивность, как коэффициент пропорциональности между потокосцеплением и током, равна:

Тогда становится очевидным, что L – это параметр, зависящий от числа витков, геометрических размеров катушки и магнитной проницаемости среды.

Электрическая ёмкость

Этот элемент так же, как и индуктивность не потребляет активной мощности, его мгновенная мощность лишь колеблется: то запасается, то отдается.

Аналогично индуктивности емкость также имеет два определения:

1) электрическая ёмкость – это свойство физического объекта (в данном случае конденсатора) запасать в себе энергию электрического поля и отдавать её во внешнюю цепь при определенных соотношениях напряжения и тока. Если мгновенное напряжение (u) и мгновенный ток (i) конденсатора одного знака, энергия им запасается, если u и i разных знаков, энергия отдается;

2) электрическая ёмкость – это коэффициент пропорциональности между зарядом (q) и напряжением (u) на обкладках конденсатора, вызвавшем этот заряд.

Это определение вытекает из формулы: q = Cu.

Ток (i) через конденсатор возникает тогда, когда изменяется заряд на его обкладках во времени: , и аналогичен возникновению напряжения на индуктивности:.

Запишем основные величины и формулы для определения ёмкости конденсатора (рис. 2.6):

диэлектрическая проницаемость:

;

теорема Гаусса:

;

формула связи электрического смещения с напряженностью электрического поля:

.

Если напряженность магнитного поля неизменна во всем объеме конденсатора, то . Напряжение на обкладках с учетом поставленных условий равно:

,

тогда , а емкость конденсатора:

В рассматриваемых выводах: D – электрическое смещение; H- напряженность электрического поля; e- диэлектрическая проницаемость среды; S – площадь пластин конденсатора; d – расстояние между пластинами.

Таким образом, ёмкость линейного конденсатора не зависит от заряда, от напряжения, а определяется геометрическими размерами и средой между его обкладками.

Adblock
detector