Электротехника

Постоянные магниты – схема магнитного и электрического поля

Автор admin

Из истории магнетизма

В VI в. до н.э. в древнем Китае был обнаружен минерал (горная порода), который притягивал к себе железные предметы. Китайцы дали ему название “чу-ши”, что переводится как “любящий камень. “Любящий” — в смысле притягивающий.

Слово “магнит” ввели в обиход древние греки в V в. до н.э. Существует легенда, что первые образцы этих необычных “черных камней” были найдены вблизи города Магнесу, где были обнаружены залежи магнетита. Магнит переводится как “камень из Магнесии”.

Магнетит — это железорудный минерал черного цвета, оксид железа Fe3O4, который имеет природные магнитные свойства.

Что такое постоянный магнит

Постоянный магнит — это твердый предмет, который способен долгое время сохранять состояние намагниченности и имеет собственное магнитное поле.

Постоянные магниты могут быть как естественного, так и искусственного происхождения. Ярким примером естественного магнита в природе является минерал магнетит. Искусственные магниты изготавливаются из различных металлов и сплавов (железо, сталь, кобальт и т.д.). Искусственные магниты намагничивают в специально созданном сильном магнитном поле. После воздействия такого поля на металл, он еще долгое время сохраняет значительную намагниченность и имеет свое магнитное поле. Искусственные магниты изготавливают любой формы и размеров.

Основным признаком постоянного магнита является наличие двух магнитных полюсов: северный — N, южный — S. Магнитные линии имеют направление снаружи постоянного магнита от северного к южному полюсу, а внутри от южного к северному.

Интересный факт: наша планета представляет собой огромный магнит. Ядро Земли имеет внешнюю оболочку из расплавленных металлов (железа, никеля и ряда примесей) при температуре более 4000 К0. Раскаленная масса, состоящая из смеси заряженных частиц, вращается вместе с Землей. В результате чего возникают непрерывно циркулирующие потоки и вихри, являющиеся главной причиной появления магнитного поля Земли.

При этом, даже если разделить такие магниты на две или более равных части, у каждой такой части все равно будет два полюса.

Как работает постоянный магнит

Его работа связана с атомной структурой. Все ферромагнетики создают естественное, хотя и слабое, МП, благодаря электронам, окружающим ядра атомов. Эти группы атомов способны ориентироваться в едином направлении и называются магнитными доменами. Каждый домен обладает двумя полюсами: северным и южным. Когда ферромагнитный материал не намагничен, его области ориентированы в случайных направлениях, а их МП компенсируют друг друга.

Чтобы создать постоянные магниты, ферромагнетики нагреваются при очень высоких температурах и подвергаются воздействию сильного внешнего МП. Это приводит к тому, что отдельные магнитные домены внутри материала начинают ориентироваться по направлению внешнего МП до тех пор, пока все домены не выровняются, достигнув точки магнитного насыщения. Затем материал охлаждают, и выровненные домены блокируются в нужном положении. После удаления внешнего МП магнито-твердые материалы будут удерживать большую часть своих доменов, создавая постоянный магнит.

Виды магнитов

Альнико

Это постоянные магниты, состоящие в основном из комбинации алюминия, никеля и кобальта, но могут также включать медь, железо и титан. Благодаря свойствам магнитов альнико, они могут работать при самых высоких температурах, сохраняя свой магнетизм, однако они легче размагничиваются, чем ферритовые или редкоземельные SmCo. Они были первыми серийными постоянными магнитами, заменяющими намагниченные металлы и дорогие электромагниты.

Применение:

  • электродвигатели;
  • термическая обработка;
  • подшипники;
  • аэрокосмические аппараты;
  • военная техника;
  • высокотемпературное погрузо-разгрузочное оборудование;
  • микрофоны.

Редкоземельные магниты SmCo

Магниты из кобальта и самария работают в широком температурном диапазоне, имеют высокие температурные коэффициенты и высокую коррозионную стойкость. Этот вид сохраняет магнитные свойства даже при температурах ниже абсолютного нуля, что делает их популярными для использования в криогенных установках.

Применение:

  • турботехника;
  • насосные муфты;
  • влажные среды;
  • высокотемпературные устройства;
  • миниатюрные гоночные автомобили с электроприводом;
  • радиоэлектронные устройства для работы в критических условиях.

Ферриты

Для изготовления ферритовых магнитов, известных еще как керамические, применяются карбонат стронция и оксид железа, в соотношении 10/90. Оба материала в изобилии и экономически доступны.

Из-за низких издержек производства, устойчивости к нагреву (до 250°C) и коррозии ферритовые магниты – одни из самых популярных для повседневного применения. Они имеют большую внутреннюю коэрцитивность, чем альнико, но меньшую магнитную силу, чем неодимовые аналоги.

Применение:

  • звуковые колонки;
  • охранные системы;
  • большие пластинчатые магниты для удаления загрязнения железом технологических линий;
  • электродвигатели и генераторы;
  • медицинские инструменты;
  • подъемные магниты;
  • морские поисковые магниты;
  • устройства, основанные на работе вихревых токов;
  • выключатели и реле;
  • тормоза.

Неодимовые магниты

Сильнейшие существующие магниты, состоящие из сплава неодима, железа и бора. Благодаря их огромной силе, даже миниатюрные магниты эффективны. Это обеспечивает универсальность использования. Каждый человек постоянно находится рядом с одним из неодимовых магнитов. Они есть, например, в смартфоне. Изготовление электродвигателей, медтехника, радиоэлектроника опираются на сверхпрочные неодимовые магниты. Из-за их сверхпрочности, огромной магнитной силы и стойкости к размагничиванию возможно изготовление образцов до 1 мм.

Применение:

  • жесткие диски;
  • звуковоспроизводящие устройства – микрофоны, акустические датчики, наушники, громкоговорители;
  • протезы;
  • насосы с магнитной связью;
  • дверные доводчики;
  • двигатели и генераторы;
  • замки на ювелирных изделиях;
  • сканеры МРТ;
  • магнитотерапия;
  • датчики ABS в автомобилях;
  • подъемное оборудование;
  • магнитные сепараторы;
  • герконовые переключатели и т. д.

Полимерные магниты

Гибкие магниты содержат магнитные частицы, находящиеся внутри полимерного связующего. Используются для уникальных устройств, где невозможна установка твердых аналогов.

Применение:

  • дисплейная реклама – быстрая фиксация и быстрое удаление на выставках и мероприятиях;
  • знаки транспортных средств, учебные школьные панели, логотипы компаний;
  • игрушки, головоломки и игры;
  • маскирование поверхностей для окраски;
  • календари и магнитные закладки;
  • оконные и дверные уплотнения.

Большинство постоянных магнитов являются хрупкими и не должны использоваться в качестве структурных элементов. Они изготавливаются в стандартных формах: кольца, стержни, диски, и индивидуальных: трапеции, дуги и др. Неодимовые магниты из-за высокого содержания железа подвержены коррозии, поэтому покрываются сверху никелем, нержавеющей сталью, тефлоном, титаном, каучуком и другими материалами.

Свойства и характеристики постоянных магнитов

Основным признаком постоянного магнита является наличие двух магнитных полюсов: северного — N (минус), южного — S (плюс). Магнитные линии направлены снаружи постоянного магнита от северного к южному полюсу, а внутри — от южного к северному. При этом, даже если разделить такие магниты на половины, у каждой такой половины все равно будет два полюса.

Магнитная индукция — векторная физическая величина, являющаяся силовой характеристикой магнитного поля, а именно характеристикой его действия на движущиеся заряженные частицы и на обладающие магнитным моментом тела.

Индуктивность (коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и полным магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур. Силовой характеристикой магнитного поля в каждой его точке является векторная величина, называемая вектором магнитной индукции поля.

Модуль вектора магнитной индукции можно найти по формуле:

B = F/IΔl

Где B — магнитная индукция;

F — сила, с которой магнитное поле действует на проводник;

I — сила тока;

Δl — длина проводника.

Наилучшими материалами для постоянных магнитов электрических машин энергетического назначения являются соединения на основе редкоземельных материалов. К ним относятся составы кобальта с самарием, а также открытые сравнительно недавно сплавы на основе железа, неодима и бора.

Достоинствами этих постоянных магнитов являются высокая удельная энергия магнитов. В таблице ниже приведены основные параметры современных магнитотвердых сплавов, служащих для изготовления высококоэрцитивных постоянных магнитов. Эти магниты рассчитаны на работу в диапазоне темпера­тур от –60 до +200 °С.

Свойства наиболее распространенных постоянных магнитов

Наименование параметров Вид магнита Неодим- железо- бор
Феррит бария Самарий-

кобальт

Магнитная индукция, Вт, Тл 0,36 0,8 – 0,9 0,8 – 1,2
Магнитная энергия, кДж/м3 22 – 28 100 – 400 200 – 400
Температурный коэффициент, % / 0С 0,2 0,04 0,15
Плотность, г/см 5,0 8,0 7,4

Существуют и немагнитные сплавы, к ним относятся: золотой, алюминиевый, медный и т.д. Такие вещества называются диамагнетиками.

Взаимодействие магнитных стрелок

Возьмем две магнитные стрелки. Установим из рядом друг с другом.

Что произойдет? Они установятся в определенных положениях: противоположными полюсами друг к другу.

Взаимодействие магнитной стрелки и магнита

Теперь возьмем магнит и поднесем его к магнитной стрелке. Что мы увидим?

Северный полюс магнитной стрелки оттолкнулся от северного полюса магнита. Он притягивается к его южному полюсу.

В это же время южный полюс магнитной стрелки отталкивается от южного полюса магнита и притягивается к северному.

Взаимодействие полюсов магнитов между собой

Так как взаимодействуют между собой полюсы магнитов? Вышеописанные и другие опыты подводят нас к выводам

Разноименные магнитные полюсы притягиваются, а одноименные — отталкиваются.

Это легко запомнить. Аналогия проходит с электрическими зарядами: одноименные отталкиваются, а разноименные притягиваются.

При этом сила взаимодействия будет прямо пропорциональна расстоянию между полюсами взаимодействующих магнитов.

Это применимо и к магнитным стрелкам, и к постоянным магнитам, и к  электромагнитам.

Но чем объясняется это явление? Все дело в существовании магнитного поля вокруг любого магнита. Магнитные поля взаимодействующих магнитов обоюдно действуют друг на друга.

Где используют постоянные магниты

Замечательные свойства постоянных магнитов используются в различных областях науки, техники, на производствах, в повседневной жизнедеятельности. Вот только некоторые из них:

  • Запись и хранение информации (магнитные ленты, компьютерные дискеты и диски);
  • Пластиковые карты различного назначения (финансовые, бонусные, контрольно-пропускные);
  • Микрофоны, громкоговорители, звуковая техника;
  • Электродвигатели, генераторы, трансформаторы;
  • Компасы;
  • В измерительных приборах с отклоняющей стрелкой, например, в амперметрах;
  • Пластиковые магниты для использования в учебных выставочных целях;
  • Магниты на холодильник;
  • Изготовление застежек для одежды и сумок:
  • Мебельные фиксаторы (закрывание дверок);
  • Детские игрушки.

Пальму первенства среди самых мощных искусственных магнитов на сегодняшний день удерживают магниты, в состав которых включены редкоземельные металлы: неодим (сплав Nd-Fe-B) или самарий (сплав Sm-Co). Эти магниты могут сохранять свои свойства, не размагничиваясь в течение 30 лет.

Почему у постоянного магнита имеется магнитное поле

В 1820 г. физик Ханс Эрстед, исследуя магнитные и электрические явления, заметил, что если вблизи металлического провода разместить магнитную стрелку компаса, то при включении электрического тока стрелка отклонялась на заметный угол. Тогда он не смог объяснить такое явление, но опубликовал результаты своей работы. Эти публикации привлекли внимание французского ученого Андре-Мари Ампера. Ампер предположил, что движение электрических зарядов в проводе (электрический ток), приводит к возникновению магнитного поля. Ампер использовал эти данные для своих лабораторных исследований и объяснил природу магнитного поля постоянных магнитов. Согласно его теории, магнитное поле появляется из-за наличия в магнитах непрерывно циркулирующих круговых токов, которые эквивалентны небольшим магнитикам. Эти токи складываются, усиливают друг друга и создают общее магнитное поле внутри и вне магнита.

Взаимодействие магнитных полей постоянных магнитов

Мы уже знаем, что вокруг магнита существует магнитное поле.

Магнитное поле — это пространство вокруг магнита, в котором действуют магнитные силы.

Магнитное поле может быть создано постоянным магнитом или электромагнитом. Поля двух магнитов могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. Разные полюса магнитов буду притягиваться, одинаковые отталкиваться. Чтобы уменьшить действие магнитов друг на друга, достаточно просто увеличить расстояние между ними. Ниже, на рисунках, показан вид линий магнитной индукции (магнитного поля) при взаимодействии двух магнитов.

Сила магнитного поля постоянного магнита

Силовой характеристикой магнитного поля является вектор магнитной индукции, обозначается как: Β и измеряется в Тл (1 Тл — это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н). Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​I​ и его длине ​Ɩ​:B=Fmax/I·l На сегодняшний день необязательно пользоваться расчетами, сила магнитного поля постоянного магнита может быть измерена измерителями Гаусса и Тесла.

Разница магнитных и электрических взаимодействий

Хоть мы и провели аналогию с электрическими зарядами, это не позволяет применять нам все законы электричества к магнетизму.

Например, есть одно очень большое отличие. Мы можем разделять электрические заряды. Это происходит при электризации в источниках тока. А вот полюсы магнита неразделимы. Если мы разрежем магнит на части, у нас все равно не получится отделить один полюс от другого. Мы просто получим два новых магнита (рисунок 9).

Разделяемые части могут равными или разными — результата все равно один. Получатся новые магниты, каждый из которых будет иметь два полюса и нейтральную зону.

Источники

  • https://obrazovaka.ru/fizika/postoyannye-magnity-shema.html
  • https://Wika.TutorOnline.ru/fizika/class/8/magnitnoe-pole-postoyannogo-magnita
  • https://elquanta.ru/teoriya/postoyannye-magnity.html
  • https://amperof.ru/elektropribory/postoyannye-magnity.html
  • https://Wika.TutorOnline.ru/fizika/class/8/osnovnye-svedeniya-o-postoyannyh-magnitah—opisanie-svojstv
  • https://obrazavr.ru/fizika/8-klass/elektromagnitnye-yavleniya/magnitnoe-pole-razlichnyh-istochnikov/postoyannye-magnity-magnitnoe-pole-postoyannyh-magnitov/

[свернуть]