Рекомбинация носителей заряда, когда свободный электрон непосредственно переходит из зоны проводимости в валентную зону, т.е. заполняет дырку в ковалентной связи атомов (прямая рекомбинация), маловероятна. Причиной этого является редкость события, при котором электрон и дырка находились бы одновременно в одном и том же месте кристалла и имели бы небольшую скорость. Основную роль в рекомбинации носителей заряда играют так называемые центры рекомбинации – ловушки, имеющие в запрещенной зоне энергетические уровни, способные захватить электроны. Процесс рекомбинации с участием ловушки протекает в две стадии: свободный электрон вначале переходит на уровень ловушки, а затем в валентную зону.
Центрами рекомбинаций могут быть примесные атомы, дефекты кристаллической решетки, расположенные в объеме или на поверхности кристалла. В связи с тем, что на поверхности кристалла перечисленных дефектов значительно больше, чем в объеме, процесс рекомбинации на поверхности должен идти значительно интенсивнее. Его рассматривают и оценивают обычно отдельно, считая поверхностную рекомбинацию разновидностью рекомбинации с участием рекомбинационных ловушек.
В зависимости от того, как расходуется энергия, освобождающаяся при рекомбинации электрона и дырки, рекомбинацию можно подразделить на два вида: излучательную, безызлучательную.
Излучательной рекомбинацией называют рекомбинацию, при которой энергия, освобождающаяся при переходе электрона на более низкий энергетический уровень, излучается в виде кванта света (фотона).
При безызлучательной (фононной) рекомбинации избыточная энергия электрона передается кристаллической решетке полупроводника, т.е. избыточная энергия идет на образование фононов – квантов тепловой энергии.
Для повышения интенсивности рекомбинационных процессов (уменьшения , ) в примесный полупроводник вводят в небольшом количестве золото или никель, создающие эффективные центры рекомбинаций носителей заряда. Время жизни носителей при этом снижается до 10 –9 – 10 -8 с.